1
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Jing S, Yao Q, Wu M, Li Y. Case Report: Lethal mitochondrial cardiomyopathy linked to a compound heterozygous variant of PARS2. Front Cardiovasc Med 2024; 11:1446055. [PMID: 39253392 PMCID: PMC11381293 DOI: 10.3389/fcvm.2024.1446055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Variants in the PARS2 gene have been previously associated with developmental and epileptic encephalopathy. PARS2 deficiency was characterized as a neurodevelopmental and neurodegenerative disorder with early-onset seizures and global developmental delay. Herein, we reported the first case with severe heart failure due to lethal mitochondrial cardiomyopathy with PARS2 compound heterozygous variants. Case presentation This patient demonstrated fatigue, chest tightness, and shortness of breath. An acute major illness had been identified at the initial evaluation, which was characterized by severe diaphoresis, dizziness, and fatigue. Blood-urine tandem mass spectrometry found multiple disorders in acid metabolism, characterized as increased homovanillic acid (130.39 mmol/L) and 2-hydroxyisovaleric acid (1.70 mmol/L), which are associated with myocardial injuries. Therefore, an inherited metabolic disorder was suspected and whole-exome sequencing was performed, revealing a novel compound heterozygous variant of c.953C>T and c.283G>A on PARS2. Echocardiography confirmed the findings from the MRI, which presented an increased left ventricular diameter at the end of the diastolic stage. The molecular structure of SYPM was established as AF-Q7L3T8-F1, and the identified mutant sites were located in the proline-tRNA ligase domain. However, the patient died due to severe heart failure. Conclusion This is the first case to reveal a novel compound heterozygous variant of PARS2-induced lethal cardiomyopathy with unreversed heart failure. Thus, this report enhances our understanding of mitochondrial tRNA function in maintaining heart function.
Collapse
Affiliation(s)
- Siyuan Jing
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyan Yao
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mei Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD. Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World J Diabetes 2024; 15:1603-1614. [PMID: 39099809 PMCID: PMC11292323 DOI: 10.4239/wjd.v15.i7.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a metabolic disease of impaired glucose utilization and a major cause of cardiovascular disease (CVD). The pathogenesis of both diseases shares common risk factors and mechanisms, and both are significant contributors to global morbidity and mortality. Supplements of natural products for T2D mellitus (T2DM) and CVD can be seen as a potential preventive and effective therapeutic strategy. AIM To critically evaluate the therapeutic potential of natural products in T2D and coronary artery disease (CAD). METHODS By using specific keywords, we strategically searched the PubMed database. Randomized controlled trials (RCTs) were searched as the primary focus that examined the effect of natural products on glycemic control, oxidative stress, and antioxidant levels. We focused on outcomes such as low blood glucose levels, adjustment on markers of oxidative stress and antioxidants. After screening full-length papers, we included 9 RCTs in our review that met our inclusion criteria. RESULTS In the literature search on the database, we found that various natural products like plant secondary metabolites play a diverse role in the management of CAD. American ginseng, sesame oil and cocoa flavanols proved effective in lowering blood glucose levels and controlling blood pressure, which are key factors in managing T2DM and CVD. In diabetic patients Melissa officinalis effectively reduce inflammation and shows diabetes prevention. Both fish oil and flaxseed oil reduced insulin levels and inflammatory markers, suggesting benefits for both conditions. The lipid profile and endothelial function were enhanced by Nigella sativa oil and Terminalia chebula, which is significant for the management of cardiovascular risk factors in T2DM. Additionally Bilberry extract also showed promise for improving glycemic control in patients with T2DM. CONCLUSION The high level of antioxidant, anti-inflammatory, and anti-angiogenic properties found in natural products makes them promising therapeutic options for the management of CAD, with the potential benefit of lowering the risk of CAD.
Collapse
Affiliation(s)
- Dharmsheel Shrivastav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Satyam Kumar Kumbhakar
- Department of Biotechnology, Govt Veer Surendra Say P.G. College, Gariaband 493889, Chhattisgarh, India
| | - Shivangi Srivastava
- Department of Life Science, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| |
Collapse
|
4
|
Kiani M, Soleimani Mehranjani M, Ali Shariatzadeh M. Empagliflozin reduces the adverse effects of diabetes mellitus on testicular tissue in type 2 diabetic Rats: A stereological and biochemical study. Biochem Pharmacol 2024; 223:116135. [PMID: 38508421 DOI: 10.1016/j.bcp.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Empagliflozin as an antioxidant decreases blood glucose and insulin resistance in type 2 diabetes mellitus. Base on the empagliflozin antioxidant properties we decided to investigate the its effects on the testis histological changes through stereological techniques and biochemical evaluations in T2 diabetes mellitus rats. Rats were divided into: control, diabetes mellitus (DM, streptozotocin + nicotinamide) and diabetes mellitus + empagliflozin (DM + EMPA, 10 mg/kg/day) groups. 56 days after inducing diabetes mellitus testis histological changes and serum biochemical factors along with the level of Bax, Bcl2 and Nrf2 genes expression in the testicular tissue were assessed. A significant decrease in the mean total volume of testis and its components, the level of Bcl2 and Nrf2 gene expression (p < 0.001) along with a significant increase in the level of IL-6, TNF-α, MDA, Bax gene expression were observed in the DM group compared to the control group (p < 0.001). In the DM + EMPA group, the mean total volume of testis and its components, the level of Bcl2 gene expression (p< 0.01) and Nrf2 (p < 0.001) significantly increased whereas the mean level of IL-6 (p < 0.01), TNF-α (p < 0.001), MDA (p < 0.001), Bax (p < 0.001) gene expression significantly decreased compared to the DM group. Our results showed that empagliflozin, by improving the antioxidant defense system, can reduce testicular inflammation and apoptosis and partly prevent the adverse effects of diabetes mellitus on testicular tissue.
Collapse
Affiliation(s)
- Mina Kiani
- Department of Biology, Faculty of Science, Arak University, Arak 3815688138, Iran
| | | | | |
Collapse
|
5
|
Hooshmand Gharabagh L, Shargh A, Mohammad Hosseini Azar MR, Esmaeili A. Comparison between the effect of Empagliflozin and Pioglitazone added to metformin in patients with type 2 diabetes and nonalcoholic fatty liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102279. [PMID: 38159676 DOI: 10.1016/j.clinre.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND/AIMS Non-alcoholic fatty liver disease (NAFLD), defined as the accumulation of >5% fat in the liver, is the most frequently co-exist disease with diabetics up to 70%. Current study was conducted to compare efficacy of combination therapy of empagliflozin (EMPA) or pioglitazone (PGZ) with metformin (MET) in patients with T2DM and NAFLD. METHODS In this open label, prospective clinical trial, sixty patients were randomly assigned to receive EMPA 10 mg/day or PGZ 30 mg/day in combination Metformin (at least 1500 mg) for six months. NAFLD grade and liver stiffness were defined and measured at the beginning and after 6 months. As the secondary outcomes, anthropometric characteristics, lipid profile, plasma glucose test, and liver enzymes test were measured at the baseline and endpoint. RESULTS The results showed that both combination therapy with EMPA+ MET or PGZ+MET significantly reversed fibrosis stage of NAFLD (P<0.05). Significant reduction in lipid profile test, and liver enzymes test were seen in both groups (P<0.05). However, the greater reduction in waist circumference was observed in EMPA groups compared to PGZ (-4.4 ± 2.39 vs -2.05±1.28, p<0.001), meanwhile weight and BMI decreased significantly only in the patients receiving EMPA (-5.78 ± 3.6 kg vs 0.93 ± 0.33 kg and -2.01± 3.19 kg/m2 vs 0.33 ± 0.12 kg/m2, respectively, P<0.001). CONCLUSION combination of EMPA or PGZ with metformin equally improved liver fibrosis stage and stiffness in T2DM patients with NAFLD. The improvements of laboratory tests were observed in the both groups, while, regarding weight reduction, only the regimen containing EMPA was effective.
Collapse
Affiliation(s)
- Laya Hooshmand Gharabagh
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.
| | - Ali Shargh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimentaland Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Zhuo C, Zhang Q, Wang L, Ma X, Li R, Ping J, Zhu J, Tian H, Jiang D. Insulin Resistance/Diabetes and Schizophrenia: Potential Shared Genetic Factors and Implications for Better Management of Patients with Schizophrenia. CNS Drugs 2024; 38:33-44. [PMID: 38097908 PMCID: PMC10811033 DOI: 10.1007/s40263-023-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Schizophrenia is a complex psychotic disorder with co-occurring conditions, including insulin resistance and type 2 diabetes (T2D). It is well established that T2D and its precursors (i.e., insulin resistance) are more prevalent in patients with schizophrenia who are treated with antipsychotics, as well as in antipsychotic-naïve patients experiencing their first episode of psychosis, compared with the general population. However, the mechanism(s) underlying the increased susceptibility, shared genetics, and possible cause-effect relationship between schizophrenia and T2D remain largely unknown. The objective of this narrative review was to synthesize important studies, including Mendelian randomization (MR) analyses that have integrated genome-wide association studies (GWAS), as well as results from in vitro models, in vivo models, and observational studies of patients with schizophrenia. Both GWAS and MR studies have found that schizophrenia and T2D/insulin resistance share genetic risk factors, and this may mediate a connection between peripheral or brain insulin resistance and T2D with cognition impairment and an increased risk of developing prediabetes and T2D in schizophrenia. Moreover, accumulating evidence supports a causal role for insulin resistance in schizophrenia and emphasizes the importance of a genetic basis for susceptibility to T2D in patients with schizophrenia before they receive psychotic treatment. The present findings and observations may have clinical implications for the development of better strategies to treat patients with schizophrenia, with both pharmacological (i.e., samidorphan, empagliflozin) and/or nonpharmacological (i.e., lifestyle changes) approaches. Additionally, this review may benefit the design of future studies by physicians and clinical investigators.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China.
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China.
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China.
| | - Qiuyu Zhang
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Lina Wang
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Xiaoyan Ma
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Ranli Li
- Laboratory of Psychiatric-Neuroimaging-Genetics and Co-morbidity (PNGC_Lab), Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Jing Ping
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jingjing Zhu
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, No. 1 Zhongshan Road, Hebei District, Tianjin, 300140, China
- Key Laboratory of Multiple Organs Damage in Patients with Metal Disorder (MODMD_Lab), Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin, 300140, China
| | - Deguo Jiang
- GWAS Center of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
7
|
Yadav J, Ahsan F, Panda P, Mahmood T, Ansari VA, Shamim A. Empagliflozin-A Sodium Glucose Co-transporter-2 Inhibitor: Overview ofits Chemistry, Pharmacology, and Toxicology. Curr Diabetes Rev 2024; 20:e230124226010. [PMID: 38265382 DOI: 10.2174/0115733998271026231127051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Empagliflozin is a sodium glucose co-transporter-2 (SGLT2) inhibitor that has gained significant attention in the treatment of type 2 diabetes mellitus. Understanding its chemistry, pharmacology, and toxicology is crucial for the safe and effective use of this medication. OBJECTIVE This review aims to provide a comprehensive overview of the chemistry, pharmacology, and toxicology of empagliflozin, synthesizing the available literature to present a concise summary of its properties and implications for clinical practice. METHODS A systematic search of relevant databases was conducted to identify studies and articles related to the chemistry, pharmacology, and toxicology of empagliflozin. Data from preclinical and clinical studies, as well as post-marketing surveillance reports, were reviewed to provide a comprehensive understanding of the topic. RESULTS Empagliflozin is a selective SGLT2 inhibitor that works by constraining glucose reabsorption in the kidneys, causing increased urinary glucose elimination. Its unique mechanism of action provides glycemic control, weight reduction, and blood pressure reduction. The drug's chemistry is characterized by its chemical structure, solubility, and stability. Pharmacologically, empagliflozin exhibits favorable pharmacokinetic properties with rapid absorption, extensive protein binding, and renal elimination. Clinical studies have demonstrated its efficacy in improving glycemic control, reducing cardiovascular risks, and preserving renal function. However, adverse effects, for instance, urinary tract infections, genital infections, and diabetic ketoacidosis have been reported. Toxicological studies indicate low potential for organ toxicity, mutagenicity, or carcinogenicity. CONCLUSION Empagliflozin is a promising SGLT2 inhibitor that offers an innovative approach to the treatment of type 2 diabetes mellitus. Its unique action mechanism and favorable pharmacokinetic profile contribute to its efficacy in improving glycemic control and reducing cardiovascular risks. While the drug's safety profile is generally favorable, clinicians should be aware of potential adverse effects and monitor patients closely. More study is required to determine the longterm safety and explore potential benefits in other patient populations. Overall, empagliflozin represents a valuable addition to the armamentarium of antidiabetic medications, offering significant benefits to patients suffering from type 2 diabetes mellitus. This study covers all aspects of empagliflozin, including its history, chemistry, pharmacology, and various clinical studies, case reports, and case series.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Prabhudatta Panda
- Department of Pharmacy, Institute of Technology & Management, Gorakhpur (U.P.), 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| |
Collapse
|
8
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Hamid AK, Tayem AA, Al-Aish ST, Al Sakini AS, Hadi DD, Al-Aish RT. Empagliflozin and other SGLT2 inhibitors in patients with heart failure and preserved ejection fraction: a systematic review and meta-analysis. Ther Adv Cardiovasc Dis 2024; 18:17539447241289067. [PMID: 39400108 PMCID: PMC11483696 DOI: 10.1177/17539447241289067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a highly prevalent disease, among the primary factors contributing to morbidity and death. One of its types is heart failure with preserved ejection fraction (HFpEF) comprising 40%-50% of newly diagnosed HF cases. Despite the high prevalence of HFpEF, there is still a lack of knowledge regarding the best drugs and treatment approaches to be used. However, the sodium-glucose co-transporter 2 (SGLT2) inhibitors could be a promising treatment. OBJECTIVES To examine SGLT2 inhibitors' effect on hospitalization, cardiovascular death, and estimated glomerular filtration rate (eGFR) in HFpEF patients. SEARCH METHODS We conducted searches for randomized controlled trials (RCTs) in PubMed, Embase, Scopus, and Web of Science up to July 2024. SELECTION CRITERIA We chose RCTs that examined the effects of SGLT2 inhibitors and placebo in individuals with higher than 40% ejection fraction (HFpEF). DATA COLLECTION AND ANALYSIS The methodology for the systematic review and meta-analysis was in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. MAIN RESULTS We included 8 studies with 16,509 participants. Drugs examined in our paper included empagliflozin, dapagliflozin, sotogliflozin, and ertugliflozin. Various outcomes were analyzed in different papers. However, different SGLT2 inhibitors lead to a decreased risk of cardiovascular hospitalization and kidney injury. Our meta-analysis showed a decreased risk of cardiovascular hospitalization but not death due to cardiovascular causes or other causes. These results were regardless of baseline status of eGFR, systolic blood pressure, atrial fibrillation or flutter, diabetes mellitus, sex, body mass index, and nt-proBNP. The included studies were of moderate to high quality. CONCLUSION For individuals with HFpEF, SGLT2 inhibitors have been proven to be a safe and effective medication. However, more studies are needed for longer durations, reporting adverse events, effects on exercise tolerance, and other secondary outcomes.
Collapse
Affiliation(s)
- Abdulrahman Khaldoon Hamid
- College of Medicine, University of Alexandria, Champollion Street, Al Mesallah Sharq, Al Attarin, Alexandria Governorate 21648, Egypt
| | | | | | | | - Dalia Dhia Hadi
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
10
|
Frąk W, Hajdys J, Radzioch E, Szlagor M, Młynarska E, Rysz J, Franczyk B. Cardiovascular Diseases: Therapeutic Potential of SGLT-2 Inhibitors. Biomedicines 2023; 11:2085. [PMID: 37509724 PMCID: PMC10377079 DOI: 10.3390/biomedicines11072085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVD) are a global health concern, affecting millions of patients worldwide and being the leading cause of global morbidity and mortality, thus creating a major public health concern. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a promising class of medications for managing CVD. Initially developed as antihyperglycemic agents for treating type 2 diabetes, these drugs have demonstrated significant cardiovascular benefits beyond glycemic control. In our paper, we discuss the role of empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and the relatively recently approved bexagliflozin, the class of SGLT-2 inhibitors, as potential therapeutic targets for cardiovascular diseases. All mentioned SGLT-2 inhibitors have demonstrated significant cardiovascular benefits and renal protection in clinical trials, in patients with or without type 2 diabetes. These novel therapeutic approaches aim to develop more effective treatments that improve patient outcomes and reduce the burden of these conditions. However, the major scientific achievements of recent years and the many new discoveries and mechanisms still require careful attention and additional studies.
Collapse
Affiliation(s)
- Weronika Frąk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Joanna Hajdys
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Ewa Radzioch
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Magdalena Szlagor
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Ewelina Młynarska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Żeromskiego 113, 90-549 Łódź, Poland
| |
Collapse
|
11
|
Maiorana A, Tagliaferri F, Dionisi-Vici C. Current understanding on pathogenesis and effective treatment of glycogen storage disease type Ib with empagliflozin: new insights coming from diabetes for its potential implications in other metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1145111. [PMID: 37152929 PMCID: PMC10160627 DOI: 10.3389/fendo.2023.1145111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Glycogen storage type Ib (GSDIb) is a rare inborn error of metabolism caused by glucose-6-phosphate transporter (G6PT, SLC37A4) deficiency. G6PT defect results in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa and into both glycogenolysis and gluconeogenesis impairment. Clinical features include hepatomegaly, hypoglycemia, lactic acidemia, hyperuricemia, hyperlipidemia, and growth retardation. Long-term complications are liver adenoma, hepatocarcinoma, nephropathy and osteoporosis. The hallmark of GSDIb is neutropenia, with impaired neutrophil function, recurrent infections and inflammatory bowel disease. Alongside classical nutritional therapy with carbohydrates supplementation and immunological therapy with granulocyte colony-stimulating factor, the emerging role of 1,5-anhydroglucitol in the pathogenesis of neutrophil dysfunction led to repurpose empagliflozin, an inhibitor of the renal glucose transporter SGLT2: the current literature of its off-label use in GSDIb patients reports beneficial effects on neutrophil dysfunction and its clinical consequences. Surprisingly, this glucose-lowering drug ameliorated the glycemic and metabolic control in GSDIb patients. Furthermore, numerous studies from big cohorts of type 2 diabetes patients showed the efficacy of empagliflozin in reducing the cardiovascular risk, the progression of kidney disease, the NAFLD and the metabolic syndrome. Beneficial effects have also been described on peripheral neuropathy in a prediabetic rat model. Increasing evidences highlight the role of empagliflozin in regulating the cellular energy sensors SIRT1/AMPK and Akt/mTOR, which leads to improvement of mitochondrial structure and function, stimulation of autophagy, decrease of oxidative stress and suppression of inflammation. Modulation of these pathways shift the oxidative metabolism from carbohydrates to lipids oxidation and results crucial in reducing insulin levels, insulin resistance, glucotoxicity and lipotoxicity. For its pleiotropic effects, empagliflozin appears to be a good candidate for drug repurposing also in other metabolic diseases presenting with hypoglycemia, organ damage, mitochondrial dysfunction and defective autophagy.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesco Tagliaferri
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|