1
|
Shu Y, Tan Z, Pan Z, Chen Y, Wang J, He J, Wang J, Wang Y. Inhibition of inflammatory osteoclasts accelerates callus remodeling in osteoporotic fractures by enhancing CGRP +TrkA + signaling. Cell Death Differ 2024; 31:1695-1706. [PMID: 39223264 PMCID: PMC11618598 DOI: 10.1038/s41418-024-01368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Impaired callus remodeling significantly contributes to the delayed healing of osteoporotic fractures; however, the underlying mechanisms remain unclear. Sensory neuronal signaling plays a crucial role in bone repair. In this study, we aimed to investigate the pathological mechanisms hindering bone remodeling in osteoporotic fractures, particularly focusing on the role of sensory neuronal signaling. We demonstrate that in ovariectomized (OVX) mice, the loss of CGRP+TrkA+ sensory neuronal signaling during callus remodeling correlates with increased Cx3cr1+iOCs expression within the bone callus. Conditional knockout of Cx3cr1+iOCs restored CGRP+TrkA+ sensory neuronal, enabling normal callus remodeling progression. Mechanistically, we further demonstrate that Cx3cr1+iOCs secrete Sema3A in the osteoporotic fracture repair microenvironment, inhibiting CGRP+TrkA+ sensory neurons' axonal regeneration and suppressing nerve-bone signaling exchange, thus hindering bone remodeling. Lastly, in human samples, we observed an association between the loss of CGRP+TrkA+ sensory neuronal signaling and increased expression of Cx3cr1+iOCs. In conclusion, enhancing CGRP+TrkA+ sensory nerve signaling by inhibiting Cx3cr1+iOCs activity presents a potential strategy for treating delayed healing in osteoporotic fractures. Inhibition of inflammatory osteoclasts enhances CGRP+TrkA+ signaling and accelerates callus remodeling in osteoporotic fractures.
Collapse
Affiliation(s)
- Yuexia Shu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhen Pan
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jieming He
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Jia Wang
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China.
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Falvino A, Gasperini B, Cariati I, Bonanni R, Chiavoghilefu A, Gasbarra E, Botta A, Tancredi V, Tarantino U. Cellular Senescence: The Driving Force of Musculoskeletal Diseases. Biomedicines 2024; 12:1948. [PMID: 39335461 PMCID: PMC11429507 DOI: 10.3390/biomedicines12091948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The aging of the world population is closely associated with an increased prevalence of musculoskeletal disorders, such as osteoporosis, sarcopenia, and osteoarthritis, due to common genetic, endocrine, and mechanical risk factors. These conditions are characterized by degeneration of bone, muscle, and cartilage tissue, resulting in an increased risk of fractures and reduced mobility. Importantly, a crucial role in the pathophysiology of these diseases has been proposed for cellular senescence, a state of irreversible cell cycle arrest induced by factors such as DNA damage, telomere shortening, and mitochondrial dysfunction. In addition, senescent cells secrete pro-inflammatory molecules, called senescence-associated secretory phenotype (SASP), which can alter tissue homeostasis and promote disease progression. Undoubtedly, targeting senescent cells and their secretory profiles could promote the development of integrated strategies, including regular exercise and a balanced diet or the use of senolytics and senomorphs, to improve the quality of life of the aging population. Therefore, our review aimed to highlight the role of cellular senescence in age-related musculoskeletal diseases, summarizing the main underlying mechanisms and potential anti-senescence strategies for the treatment of osteoporosis, sarcopenia, and osteoarthritis.
Collapse
Affiliation(s)
- Angela Falvino
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Beatrice Gasperini
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Angela Chiavoghilefu
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Parolini C. The Role of Marine n-3 Polyunsaturated Fatty Acids in Inflammatory-Based Disease: The Case of Rheumatoid Arthritis. Mar Drugs 2023; 22:17. [PMID: 38248642 PMCID: PMC10817514 DOI: 10.3390/md22010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a conserved process that involves the activation of immune and non-immune cells aimed at protecting the host from bacteria, viruses, toxins and injury. However, unresolved inflammation and the permanent release of pro-inflammatory mediators are responsible for the promotion of a condition called "low-grade systemic chronic inflammation", which is characterized by tissue and organ damage, metabolic changes and an increased susceptibility to non-communicable diseases. Several studies have demonstrated that different dietary components may influence modifiable risk factors for diverse chronic human pathologies. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are well-recognized anti-inflammatory and immunomodulatory agents that are able to influence many aspects of the inflammatory process. The aim of this article is to review the recent literature that relates to the modulation of human disease, such as rheumatoid arthritis, by n-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
4
|
Belluzzi E, Pozzuoli A, Ruggieri P. Musculoskeletal Diseases: From Molecular Basis to Therapy. Biomedicines 2023; 12:32. [PMID: 38255139 PMCID: PMC10813464 DOI: 10.3390/biomedicines12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Musculoskeletal diseases (MSDs) comprise a plethora of different disorders (more than 150 conditions) affecting the locomotor system [...].
Collapse
Affiliation(s)
- Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Via Giustiniani 3, 35128 Padova, Italy;
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Via Giustiniani 3, 35128 Padova, Italy;
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
- Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Bonanni R, Abbondante L, Cariati I, Gasbarra E, Tarantino U. Metallosis after Hip Arthroplasty Damages Skeletal Muscle: A Case Report. Geriatrics (Basel) 2023; 8:92. [PMID: 37736892 PMCID: PMC10514854 DOI: 10.3390/geriatrics8050092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Good musculoskeletal quality dramatically influences the outcome of an arthroplasty operation in geriatric patients, as well as is a key element for optimal osseointegration. In this context, metallosis is a complication associated with the type of prosthesis used, as implants with a chromium-cobalt interface are known to alter the bone microarchitecture and reduce the ratio of muscle to fat, resulting in lipid accumulation. Therefore, the aim of our study was to investigate possible muscle changes by histological, morphometric, and immunohistochemical analyses in a patient undergoing hip replacement revision with elevated blood and urinary concentrations of chromium and cobalt. Interestingly, the muscle tissue showed significant structural changes and a massive infiltration of adipose tissue between muscle fibers in association with an altered expression pattern of important biomarkers of musculoskeletal health and oxidative stress, such as myostatin and NADPH Oxidase 4. Overall, our results confirm the very serious impact of metallosis on musculoskeletal health, suggesting the need for further studies to adopt a diagnostic approach to identify the cause of metallosis early and eliminate it as part of the prosthesis revision surgery.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Lorenzo Abbondante
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|