1
|
Nunno VD, Aprile M, Gatto L, Tosoni A, Ranieri L, Bartolini S, Franceschi E. Novel insights toward diagnosis and treatment of glioneuronal and neuronal tumors in young adults. CNS Oncol 2024; 13:2357532. [PMID: 38873961 PMCID: PMC11181933 DOI: 10.1080/20450907.2024.2357532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/26/2024] [Indexed: 06/15/2024] Open
Abstract
Aim: Glioneuronal and neuronal tumors are rare primary central nervous system malignancies with heterogeneous features. Due to the rarity of these malignancies diagnosis and treatment remains a clinical challenge. Methods: Here we performed a narrative review aimed to investigate the principal issues concerning the diagnosis, pathology, and clinical management of glioneuronal tumors. Results: Diagnostic criteria have been recently overturned thanks to a better characterization on a histological and molecular biology level. The study of genomic alterations occurring within these tumors has allowed us to identify potential therapeutic targets including BRAF, FGFR, and PDGFRA. Conclusion: Techniques allowing molecular sequencing DNA methylation assessment of the disease are essential diagnostic tools. Targeting agents should be included in the therapeutic armamentarium after loco-regional treatment failure.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Aprile
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Mercado NB, Real JN, Kaiserman J, Panagioti E, Cook CH, Lawler SE. Clinical implications of cytomegalovirus in glioblastoma progression and therapy. NPJ Precis Oncol 2024; 8:213. [PMID: 39343770 PMCID: PMC11439950 DOI: 10.1038/s41698-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Glioblastoma (GBM) is one of the deadliest brain cancers with a median survival of only 15 months. This poor prognosis has prompted exploration of novel therapeutic targets for GBM patients. Human cytomegalovirus (HCMV) has been implicated in GBM; however, its impact remains poorly defined, and there is conflicting data over the presence of HCMV in tumors. Nonetheless, clinical trials targeting HCMV have shown promising initial data, and evidence suggests that HCMV may negatively impact GBM patient survival by multiple mechanisms including changes in GBM cell behavior and the tumor microenvironment (TME) that potentiate tumor progression as well as therapy-induced virus reactivation. Moreover, HCMV has many effects on host immunity that could impact tumor behavior by altering the TME, which are largely unexplored. The goal of this review is to describe these potential interactions between HCMV and GBM. Better understanding of these processes may allow the development of new therapeutic modalities to improve GBM patient outcomes.
Collapse
Affiliation(s)
- Noe B Mercado
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacqueline N Real
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Jacob Kaiserman
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US
- The Warren Alpert Medical School, Brown University, Providence, RI, US
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Sean E Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, US.
- The Warren Alpert Medical School, Brown University, Providence, RI, US.
| |
Collapse
|
4
|
Tataranu LG, Turliuc S, Kamel A, Rizea RE, Dricu A, Staicu GA, Baloi SC, Rodriguez SMB, Manole AIM. Glioblastoma Tumor Microenvironment: An Important Modulator for Tumoral Progression and Therapy Resistance. Curr Issues Mol Biol 2024; 46:9881-9894. [PMID: 39329940 PMCID: PMC11430601 DOI: 10.3390/cimb46090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The race to find an effective treatment for glioblastoma (GBM) remains a critical topic, because of its high aggressivity and impact on survival and the quality of life. Currently, due to GBM's high heterogeneity, the conventional treatment success rate and response to therapy are relatively low, with a median survival rate of less than 20 months. A new point of view can be provided by the comprehension of the tumor microenvironment (TME) in pursuance of the development of new therapeutic strategies to aim for a longer survival rate with an improved quality of life and longer disease-free interval (DFI). The main components of the GBM TME are represented by the extracellular matrix (ECM), glioma cells and glioma stem cells (GSCs), immune cells (microglia, macrophages, neutrophils, lymphocytes), neuronal cells, all of them having dynamic interactions and being able to influence the tumoral growth, progression, and drug resistance thus being a potential therapeutic target. This paper will review the latest research on the GBM TME and the potential therapeutic targets to form an up-to-date strategy.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy "G. T. Popa", 700115 Iasi, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anica Dricu
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | - Stefania Carina Baloi
- Biochemistry Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | | | | |
Collapse
|
5
|
Bonada M, Rossi LF, Carone G, Panico F, Cofano F, Fiaschi P, Garbossa D, Di Meco F, Bianconi A. Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field. Biomedicines 2024; 12:1878. [PMID: 39200342 PMCID: PMC11352020 DOI: 10.3390/biomedicines12081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Deep learning (DL) has been applied to glioblastoma (GBM) magnetic resonance imaging (MRI) assessment for tumor segmentation and inference of molecular, diagnostic, and prognostic information. We comprehensively overviewed the currently available DL applications, critically examining the limitations that hinder their broader adoption in clinical practice and molecular research. Technical limitations to the routine application of DL include the qualitative heterogeneity of MRI, related to different machinery and protocols, and the absence of informative sequences, possibly compensated by artificial image synthesis. Moreover, taking advantage from the available benchmarks of MRI, algorithms should be trained on large amounts of data. Additionally, the segmentation of postoperative imaging should be further addressed to limit the inaccuracies previously observed for this task. Indeed, molecular information has been promisingly integrated in the most recent DL tools, providing useful prognostic and therapeutic information. Finally, ethical concerns should be carefully addressed and standardized to allow for data protection. DL has provided reliable results for GBM assessment concerning MRI analysis and segmentation, but the routine clinical application is still limited. The current limitations could be prospectively addressed, giving particular attention to data collection, introducing new technical advancements, and carefully regulating ethical issues.
Collapse
Affiliation(s)
- Marta Bonada
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Luca Francesco Rossi
- Department of Informatics, Polytechnic University of Turin, Corso Castelfidardo 39, 10129 Turin, Italy;
| | - Giovanni Carone
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Flavio Panico
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Pietro Fiaschi
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (G.C.)
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (M.B.); (F.C.); (D.G.)
- Division of Neurosurgery, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
6
|
Zarychta J, Kowalczyk A, Marszołek A, Zawitkowska J, Lejman M. Strategies to overcome tumor microenvironment immunosuppressive effect on the functioning of CAR-T cells in high-grade glioma. Ther Adv Med Oncol 2024; 16:17588359241266140. [PMID: 39156126 PMCID: PMC11327996 DOI: 10.1177/17588359241266140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Despite significant progress in the treatment of some types of cancer, high-grade gliomas (HGGs) remain a significant clinical problem. In the case of glioblastoma (GBM), the most common solid tumor of the central nervous system in adults, the average survival time from diagnosis is only 15-18 months, despite the use of intensive multimodal therapy. Chimeric antigen receptor (CAR)-expressing T cells, which have already been approved by the Food and Drug Administration for use in the treatment of certain hematologic malignancies, are a new, promising therapeutic option. However, the efficacy of CAR-T cells in solid tumors is lower due to the immunosuppressive tumor microenvironment (TME). Reprogramming the immunosuppressive TME toward a pro-inflammatory phenotype therefore seems particularly important because it may allow for increasing the effectiveness of CAR-T cells in the therapy of solid tumors. The following literature review aims to present the results of preclinical studies showing the possibilities of improving the efficacy of CAR-T in the TME of GBM by reprogramming the TME toward a pro-inflammatory phenotype. It may be achievable thanks to the use of CAR-T in a synergistic therapy in combination with oncolytic viruses, radiotherapy, or epigenetic inhibitors, as well as by supporting CAR-T cells crossing of the blood-brain barrier, normalizing impaired angiogenesis in the TME, improving CAR-T effector functions by cytokine signaling or by blocking/knocking out T-cell inhibitors, and modulating the microRNA expression. The use of CAR-T cells modified in this way in synergistic therapy could lead to the longer survival of patients with HGG by inducing an endogenous anti-tumor response.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Racławickie 1, Lublin 20-093, Poland
| |
Collapse
|
7
|
Fan J, Liu J, Zhang B, Wang X, Wang X, Liang J, Li Y, Zhang Y, Zhang C, Yu S, Li T, Yang X. GPR65 contributes to constructing immunosuppressive microenvironment in glioma. Neurosurg Rev 2024; 47:417. [PMID: 39123083 PMCID: PMC11315802 DOI: 10.1007/s10143-024-02633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Glioma, especially glioblastoma patients, present highly heterogeneous and immunosuppressive microenvironment, leading to their poor response to treatment and survival. Targeting the tumor microenvironment is considered a promising therapeutic strategy. M2 macrophages are highly infiltrated in glioma tissue, even up to 50% of the total number of bulk tissue cells. Here, we identified GPR65 as the hub gene of the M2 macrophage-related module in glioma through WGCNA analysis. The expression and prognosis analysis suggested that GPR65 was positively correlated with the malignancy and poor prognosis of glioma, and the heterogeneity analysis found that GPR65 was highly expressed in the vascular proliferation area of glioma, which matched the spatial expression characteristics of M2 macrophages. We further verified that GPR65 was highly expressed in macrophages but not tumor cells in the glioma microenvironment by single-cell data analysis and immunofluorescence. Most importantly, we found that inhibition of GPR65 was sufficient to reduce macrophages' polarization response to glioma cell and break the malignant cooperation with glioma cells. Our study reports the expression characteristics and malignant behavior of GPR65 in the glioma microenvironment, which provides a new alternative target of treatment to glioma microenvironment.
Collapse
Affiliation(s)
- Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Bin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, 102200, China.
| |
Collapse
|
8
|
Li X, Gou W, Zhang X. Neuroinflammation in Glioblastoma: Progress and Perspectives. Brain Sci 2024; 14:687. [PMID: 39061427 PMCID: PMC11274945 DOI: 10.3390/brainsci14070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, with high morbidity and mortality. Despite an aggressive, multimodal treatment regimen, including surgical resection followed by chemotherapy and radiotherapy, the prognosis of glioblastoma patients remains poor. One formidable challenge to advancing glioblastoma therapy is the complexity of the tumor microenvironment. The tumor microenvironment of glioblastoma is a highly dynamic and heterogeneous system that consists of not only cancerous cells but also various resident or infiltrating inflammatory cells. These inflammatory cells not only provide a unique tumor environment for glioblastoma cells to develop and grow but also play important roles in regulating tumor aggressiveness and treatment resistance. Targeting the tumor microenvironment, especially neuroinflammation, has increasingly been recognized as a novel therapeutic approach in glioblastoma. In this review, we discuss the components of the tumor microenvironment in glioblastoma, focusing on neuroinflammation. We discuss the interactions between different tumor microenvironment components as well as their functions in regulating glioblastoma pathogenesis and progression. We will also discuss the anti-tumor microenvironment interventions that can be employed as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaoqin Zhang
- Department of Pathology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Cofano F, Bianconi A, De Marco R, Consoli E, Zeppa P, Bruno F, Pellerino A, Panico F, Salvati LF, Rizzo F, Morello A, Rudà R, Morana G, Melcarne A, Garbossa D. The Impact of Lateral Ventricular Opening in the Resection of Newly Diagnosed High-Grade Gliomas: A Single Center Experience. Cancers (Basel) 2024; 16:1574. [PMID: 38672655 PMCID: PMC11049264 DOI: 10.3390/cancers16081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Given the importance of maximizing resection for prognosis in patients with HGG and the potential risks associated with ventricle opening, this study aimed to assess the actual increase in post-surgical complications related to lateral ventricle opening and its influence on OS and PFS. A retrospective study was conducted on newly diagnosed HGG, dividing the patients into two groups according to whether the lateral ventricle was opened (69 patients) or not opened (311 patients). PFS, OS, subependymal dissemination, distant parenchymal recurrences, the development of hydrocephalus and CSF leak were considered outcome measures. A cohort of 380 patients (154 females (40.5%) and 226 males (59.5%)) was involved in the study (median age 61 years). The PFS averaged 10.9 months (±13.3 SD), and OS averaged 16.6 months (± 16.3 SD). Among complications, subependymal dissemination was registered in 15 cases (3.9%), multifocal and multicentric progression in 56 cases (14.7%), leptomeningeal dissemination in 12 (3.2%) and hydrocephalus in 8 (2.1%). These occurrences could not be clearly justified by ventricular opening. The act of opening the lateral ventricles itself does not carry an elevated risk of dissemination, hydrocephalus or cerebrospinal fluid (CSF) leak. Therefore, if necessary, it should be pursued to achieve radical removal of the disease.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Raffaele De Marco
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Elena Consoli
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Francesco Bruno
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Alessia Pellerino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Flavio Panico
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | | | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Alberto Morello
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
| | - Roberta Rudà
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Division of Neuro-Oncology, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Giovanni Morana
- Division of Neuroradiology, Department of Diagnostic Imaging and Radiotherapy, “Città della Salute e della Scienza” University Hospital, University of Turin, 10124 Turin, Italy
| | - Antonio Melcarne
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy (E.C.); (A.P.); (F.P.)
- Neurosurgery Unit, “Città della Salute e della Scienza” University Hospital, 10124 Turin, Italy
| |
Collapse
|
10
|
Wang X, Bai Y, Wang B. Coactosin-Like Protein 1 (COTL1) Could Be an Immunological and Prognostic Biomarker: From Pan-Cancer Analysis to Low-Grade Glioma Validation. J Inflamm Res 2024; 17:1805-1820. [PMID: 38523681 PMCID: PMC10960547 DOI: 10.2147/jir.s453509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Background Cancer represents a widespread global health challenge impacting millions of individuals worldwide. Identifying new targets for cancer treatment is a crucial step in developing more effective therapies. Among these potential targets, Coactosin-like protein 1 (COTL1), a cytoskeleton-associated protein with critical roles in cell migration, adhesion, and signaling, has shown involvement in tumor progression. Methods GSCA, TIMER, SangerBox database were used to explore the COTL1 expression across different tumor types. We employed the TCGA Pan-Atlas Cancer Genomics Dataset, which is available through the cBioportal platform, to explore genetic alterations in COTL1. We conduct a comprehensive analysis of COTL1, encompassing gene expression, clinical prognosis, RNA modification, immunotherapy, and cancer stemness through SangerBox database. Clinical samples were validated using immunohistochemistry. Results Our analysis revealed that COTL1 is highly expressed in most cancers and correlates with decreased survival in Glioma, Glioblastoma multiforme, and pan-kidney cohorts. Furthermore, COTL1 was found to be associated with DNA and RNA stemness in 20 and 22 different tumor types, respectively. Additionally, COTL1 showed positive correlations with immunological checkpoints and immune infiltration cells. It was also linked to tumor mutation burden (TMB), microsatellite instability (MSI), neoantigen (NEO), and programmed death ligand 1 (PD-L1), all of which are potential targets for immunotherapies. Moreover, a favorable relationship was demonstrated between genomic-instability markers such as heterozygosity (LOH), homologous recombination deficiency (HRD), and mutant allele tumor heterogeneity (MATH) with COTL1. Furthermore, our findings confirmed a positive correlation between COTL1 expression, CD8, and PD-L1 in LGG, as well as an association of high COTL1 expression with decreased patient survival in LGG. Conclusion Based on these compelling findings, COTL1 may hold significant clinical implications for the development of novel cancer therapies and serve as a potential target for tumors associated with immunotherapy in the future.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Yuwei Bai
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Bei Wang
- Institute of Integration of Traditional Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
11
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Morello A, Bianconi A, Rizzo F, Bellomo J, Meyer AC, Garbossa D, Regli L, Cofano F. Laser Interstitial Thermotherapy (LITT) in Recurrent Glioblastoma: What Window of Opportunity for This Treatment? Technol Cancer Res Treat 2024; 23:15330338241249026. [PMID: 38693845 PMCID: PMC11067676 DOI: 10.1177/15330338241249026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Laser Interstitial Thermotherapy is a minimally invasive treatment option in neurosurgery for intracranial tumors, including recurrent gliomas. The technique employs the thermal ablation of target tissue to achieve tumor control with real-time monitoring of the extent by magnetic resonance thermometry, allowing targeted thermal injury to the lesion. Laser Interstitial Thermotherapy has gained interest as a treatment option for recurrent gliomas due to its minimally invasive nature, shorter recovery times, ability to be used even in patients with numerous comorbidities, and potential to provide local tumor control. It can be used as a standalone treatment or combined with other therapies, such as chemotherapy or radiation therapy. We describe the most recent updates regarding several studies and case reports that have evaluated the efficacy and safety of Laser Interstitial Thermotherapy for recurrent gliomas. These studies have reported different outcomes, with some demonstrating promising results in terms of tumor control and patient survival, while others have shown mixed outcomes. The success of Laser Interstitial Thermotherapy depends on various factors, including tumor characteristics, patient selection, and the experience of the surgical team, but the future direction of treatment of recurrent gliomas will include a combined approach, comprising Laser Interstitial Thermotherapy, particularly in deep-seated brain regions. Well-designed prospective studies will be needed to establish with certainty the role of Laser Interstitial Thermotherapy in the treatment of recurrent glioma.
Collapse
Affiliation(s)
- Alberto Morello
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Bianconi
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Francesca Rizzo
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Jacopo Bellomo
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, “Città della Salute e della Scienza” University Hospital, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Li F, Song W, Wu L, Liu B, Du X. EIF4A3 induced circGRIK2 promotes the malignancy of glioma by regulating the miR-1303/HOXA10 axis. Am J Cancer Res 2023; 13:5868-5886. [PMID: 38187044 PMCID: PMC10767333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, the role of circular RNAs (circRNAs) in glioma has become increasingly important. However, there are still many newly discovered circRNAs with unknown functions that require further study. In this study, circRNA sequencing, qPCR, MTS, EdU, Transwell, and other assays were conducted to detect the expression and malignant effects of a novel circRNA molecule, circGRIK2, in glioma. qPCR, western blotting, RIP, and luciferase reporter gene experiments were used to investigate the downstream molecular mechanisms of circGRIK2. Our study found that circGRIK2 was highly expressed in glioma and promoted glioma cell viability, proliferation, invasion, and migration. Mechanistically, circGRIK2 acted as a competitive sponge for miR-1303, upregulating the expression of HOXA10 to exert its oncogenic effects. Additionally, the RNA-binding protein EIF4A3 could bind to and stabilize circGRIK2, leading to its high expression in glioblastoma. The discovery of circGRIK2 in this study not only contributes to a better understanding of the biological mechanisms of circGRIK2 in glioma but also provides a new target for molecular targeted therapy.
Collapse
Affiliation(s)
- Fubin Li
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Lin Wu
- Department of Pediatrics, Zhangdian Maternal and Child Health Care HospitalZibo 255036, Shandong, China
| | - Bin Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
| | - Xinrui Du
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| |
Collapse
|
14
|
Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci 2023; 13:1536. [PMID: 38002496 PMCID: PMC10669378 DOI: 10.3390/brainsci13111536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood-brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood-brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
15
|
Xu Z, Xu H, Chen X, Huang X, Tian J, Zhao J, Liu B, Shi F, Wu J, Pu J. CCDC103 as a Prognostic Biomarker Correlated with Tumor Progression and Immune Infiltration in Glioma. Onco Targets Ther 2023; 16:819-837. [PMID: 37873495 PMCID: PMC10590567 DOI: 10.2147/ott.s429958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023] Open
Abstract
Background The Coiled-coil domain-containing proteins (CCDCs) are expressed in many cancers, but the role of Coiled-coil domain-containing protein 103 (CCDC103) in cancers remains unclear. Further investigations are necessary to ascertain its diagnostic significance and understand its biological function in cancers. This study aims to elucidate the biological functionalities of CCDC103 in glioma and evaluate the correlation between CCDC103 expression with glioma progression. Methods Clinical data on glioma patients were acquired from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), and the Gene Expression Omnibus (GEO). The evaluation encompassed the examination of correlations between CCDC103 expression, pathological characteristics, and clinical outcomes. Furthermore, the analysis included the assessment of the correlations between CCDC103 expression and immune cell infiltration as well as glioma progression. Results Gliomas have higher levels of CCDC103 expression than the para-carcinoma tissues. Poorer prognosis, unfavorable histological characteristics, the absence of IDH gene mutations, and the absence of chromosome 1p and 19q deletions were all associated with higher expression of CCDC103 in gliomas. In addition to patient age, tumor grade, the absence of IDH mutations, and the absence of chromosome 1p and 19q deletions, univariate and multivariate Cox analyses showed that CCDC103 expression was independently prognostic of overall survival, disease-free survival, and progression-free survival in patients with glioma. Furthermore, tumor infiltration of B cells, neutrophils, macrophages, and dendritic cells were all linked with elevated expression of CCDC103. High CCDC103 expression was linked to immune response-related signaling pathways and cell proliferation, according to gene set enrichment analysis (GSEA). Notably, the knockdown of CCDC103 in glioma cell lines resulted in a significant reduction in cell proliferation and migration. Conclusion The correlation between CCDC103 expression and both glioma progression and immune cell infiltration implies that CCDC103 expression holds promise as a valuable prognostic biomarker for glioma.
Collapse
Affiliation(s)
- Zhixing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
- Department of Neurosurgery, The Pu’er People’s Hospital, Pu’er, 665000, People’s Republic of China
| | - Haitao Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Xiaobing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Jintao Tian
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Jinxi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Bohu Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| | - Fengcai Shi
- Department of Neurosurgery, The Pu’er People’s Hospital, Pu’er, 665000, People’s Republic of China
| | - Jin Wu
- Department of Neurosurgery, The Pu’er People’s Hospital, Pu’er, 665000, People’s Republic of China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, People’s Republic of China
| |
Collapse
|
16
|
Rumler S. Non-cellular immunotherapies in pediatric central nervous system tumors. Front Immunol 2023; 14:1242911. [PMID: 37885882 PMCID: PMC10598668 DOI: 10.3389/fimmu.2023.1242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer and the most common cause of cancer death in pediatric patients. New therapies are desperately needed for some of the most malignant of all cancers. Immunotherapy has emerged in the past two decades as an additional avenue to augment/replace traditional therapies (such as chemotherapy, surgery, and radiation therapy). This article first discusses the unique nature of the pediatric CNS immune system and how it interacts with the systemic immune system. It then goes on to review three important and widely studied types of immune therapies: checkpoint inhibitors, vaccines, and radiation therapy, and touches on early studies of antibody-mediated immunogenic therapies, Finally, the article discusses the importance of combination immunotherapy for pediatric CNS tumors, and addresses the neurologic toxicities associated with immunotherapies.
Collapse
Affiliation(s)
- Sarah Rumler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|