1
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of dopamine receptor antagonists and radiation on mouse neural stem/progenitor cells. Radiother Oncol 2024; 201:110562. [PMID: 39341503 DOI: 10.1016/j.radonc.2024.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dopamine receptor antagonists have recently been identified as potential anti-cancer agents in combination with radiation, and a first drug of this class is in clinical trials against pediatric glioma. Radiotherapy causes cognitive impairment primarily by eliminating neural stem/progenitor cells and subsequent loss of neurogenesis, along with inducing inflammation, vascular damage, and synaptic alterations. Here, we tested the combined effects of dopamine receptor antagonists and radiation on neural stem/progenitor cells. METHODS Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of EGFP, the effects of dopamine receptor antagonists alone or in combination with radiation on neural stem/progenitor cells were assessed in sphere-formation assays, extreme limiting dilution assays, flow cytometry and real-time PCR in vitro and in vivo in both sexes. RESULTS We report that hydroxyzine and trifluoperazine exhibited sex-dependent effects on murine newborn neural stem/progenitor cells in vitro. In contrast, amisulpride, nemonapride, and quetiapine, when combined with radiation, significantly increased the number of neural stem/progenitor cells in both sexes. In vivo, trifluoperazine showed sex-dependent effects on adult neural stem/progenitor cells, while amisulpride demonstrated significant effects in both sexes. Further, amisulpride increased sphere forming capacity and stem cell frequency in both sexes when compared to controls. CONCLUSION We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exists, making it a novel combination therapy against glioblastoma. Normal tissue toxicity following this treatment scheme likely differs depending on age and sex and should be taken into consideration when designing clinical trials.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States.
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery, David Geffen School of Medicine at UCLA, United States
| |
Collapse
|
3
|
Burton E, Ozer BH, Boris L, Brown D, Theeler B. Imipridones and Dopamine Receptor Antagonism in the Therapeutic Management of Gliomas. ADVANCES IN ONCOLOGY 2024; 4:101-110. [PMID: 38868646 PMCID: PMC11165802 DOI: 10.1016/j.yao.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Eric Burton
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 221, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Byram H. Ozer
- Neuro-oncology Branch, National Cancer Institute, Bethesda, MD
- NOB, Building 82, Room 217, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, USA
- NOB, Building 82, Room 203, 9030 Old Georgetown Road, Bethesda, MD 20892
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, NINDS, Bethesda, MD
- SNB, Building 10-CRC, Room 3D20, 10 Center Drive, Bethesda, MD 20814
| | - Brett Theeler
- Department of Neurology, Uniform Services University of the Health Sciences, Bethesda, MD.Department of Neurology, USUHS, 4301 Jones Bridge Road, Bethesda, MD. 20814
| |
Collapse
|
4
|
González Brito R, Montenegro P, Méndez A, Shabgahi RE, Pasquarelli A, Borges R. Analytical Determination of Serotonin Exocytosis in Human Platelets with BDD-on-Quartz MEA Devices. BIOSENSORS 2024; 14:75. [PMID: 38391994 PMCID: PMC10886747 DOI: 10.3390/bios14020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Amperometry is arguably the most widely used technique for studying the exocytosis of biological amines. However, the scarcity of human tissues, particularly in the context of neurological diseases, poses a challenge for exocytosis research. Human platelets, which accumulate 90% of blood serotonin, release it through exocytosis. Nevertheless, single-cell amperometry with encapsulated carbon fibers is impractical due to the small size of platelets and the limited number of secretory granules on each platelet. The recent technological improvements in amperometric multi-electrode array (MEA) devices allow simultaneous recordings from several high-performance electrodes. In this paper, we present a comparison of three MEA boron-doped diamond (BDD) devices for studying serotonin exocytosis in human platelets: (i) the BDD-on-glass MEA, (ii) the BDD-on-silicon MEA, and (iii) the BDD on amorphous quartz MEA (BDD-on-quartz MEA). Transparent electrodes offer several advantages for observing living cells, and in the case of platelets, they control activation/aggregation. BDD-on-quartz offers the advantage over previous materials of combining excellent electrochemical properties with transparency for microscopic observation. These devices are opening exciting perspectives for clinical applications.
Collapse
Affiliation(s)
- Rosalía González Brito
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Pablo Montenegro
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Alicia Méndez
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| | - Ramtin E. Shabgahi
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, Ulm University, 89069 Ulm, Germany; (R.E.S.); (A.P.)
| | - Ricardo Borges
- Pharmacology Unit, Medical School, Universidad de La Laguna, 38200 La Laguna, Spain; (R.G.B.); (P.M.); (A.M.)
| |
Collapse
|
5
|
Moura C, Correia AS, Vale N. Exploring the Interaction of Indole-3-Acetonitrile with Neuroblastoma Cells: Understanding the Connection with the Serotonin and Dopamine Pathways. Biomedicines 2023; 11:3325. [PMID: 38137546 PMCID: PMC10741800 DOI: 10.3390/biomedicines11123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Indole-3-acetonitrile, a compound produced by bacteria and plants as a defense and survival signal in response to attacks, has been recently discovered as a metabolite produced by human cancer cells. This discovery suggests a potential association between IAN and cancer progression in patients. Consequently, the aim of this work was to study the effects of IAN on a specific cancer cell line, SH-SY5Y, and elucidate its connection to the serotonin and dopamine pathways by examining the precursors of these neurotransmitters. To achieve this, a cellular viability assay was conducted, along with a morphological evaluation of the cells under both normal and stress conditions. Our results demonstrated that for the highest concentrations in our study, IAN was able to reduce the cellular viability of the cells. Furthermore, when IAN was combined with the amino acids that originate the neurotransmitters, it was possible to observe that in both combinations there was a decrease in the viability of the cells. Thus, IAN may in fact have some influence on both the serotonin and dopamine pathways since changes in cell viability were observed when it was added together with the amino acids. This preliminary study indicates the presence of an interaction between IAN and neuroblastoma cells that justifies further exploration and study.
Collapse
Affiliation(s)
- Catarina Moura
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (C.M.); (A.S.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Salomé Correia
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (C.M.); (A.S.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (C.M.); (A.S.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|