1
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Garza Treviño EN, Quiroz Reyes AG, Delgado Gonzalez P, Rojas Murillo JA, Islas JF, Alonso SS, Gonzalez Villarreal CA. Applications of Modified Mesenchymal Stem Cells as Targeted Systems against Tumor Cells. Int J Mol Sci 2024; 25:7791. [PMID: 39063032 PMCID: PMC11276748 DOI: 10.3390/ijms25147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Combined gene and cell therapy are promising strategies for cancer treatment. Given the complexity of cancer, several approaches are actively studied to fight this disease. Using mesenchymal stem cells (MSCs) has demonstrated dual antitumor and protumor effects as they exert massive immune/regulatory effects on the tissue microenvironment. MSCs have been widely investigated to exploit their antitumor target delivery system. They can be genetically modified to overexpress genes and selectively or more efficiently eliminate tumor cells. Current approaches tend to produce more effective and safer therapies using MSCs or derivatives; however, the effect achieved by engineered MSCs in solid tumors is still limited and depends on several factors such as the cell source, transgene, and tumor target. This review describes the progress of gene and cell therapy focused on MSCs as a cornerstone against solid tumors, addressing the different MSC-engineering methods that have been approached over decades of research. Furthermore, we summarize the main objectives of engineered MSCs against the most common cancers and discuss the challenges, limitations, risks, and advantages of targeted treatments combined with conventional ones.
Collapse
Affiliation(s)
- Elsa N. Garza Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Adriana G. Quiroz Reyes
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Paulina Delgado Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Juan Antonio Rojas Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Jose Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Dr. José Eleuterio González 235, Monterrey 64460, Nuevo León, Mexico; (E.N.G.T.); (A.G.Q.R.); (P.D.G.); (J.A.R.M.); (J.F.I.)
| | - Santiago Saavedra Alonso
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| | - Carlos A. Gonzalez Villarreal
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, Ignacio Morones Prieto 4500, Jesus M. Garza, San Pedro Garza García 66238, Nuevo León, Mexico
| |
Collapse
|
3
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
4
|
Fu W, Liao Q, Shi Y, Liu W, Ren H, Xu C, Zeng C. Transient induction of actin cytoskeletal remodeling associated with dedifferentiation, proliferation, and redifferentiation stimulates cardiac regeneration. Acta Pharm Sin B 2024; 14:2537-2553. [PMID: 38828141 PMCID: PMC11143747 DOI: 10.1016/j.apsb.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 06/05/2024] Open
Abstract
The formation of new and functional cardiomyocytes requires a 3-step process: dedifferentiation, proliferation, and redifferentiation, but the critical genes required for efficient dedifferentiation, proliferation, and redifferentiation remain unknown. In our study, a circular trajectory using single-nucleus RNA sequencing of the pericentriolar material 1 positive (PCM1+) cardiomyocyte nuclei from hearts 1 and 3 days after surgery-induced myocardial infarction (MI) on postnatal Day 1 was reconstructed and demonstrated that actin remodeling contributed to the dedifferentiation, proliferation, and redifferentiation of cardiomyocytes after injury. We identified four top actin-remodeling regulators, namely Tmsb4x, Tmsb10, Dmd, and Ctnna3, which we collectively referred to as 2D2P. Transiently expressed changes of 2D2P, using a polycistronic non-integrating lentivirus driven by Tnnt2 (cardiac-specific troponin T) promoters (Tnnt2-2D2P-NIL), efficiently induced transiently proliferative activation and actin remodeling in postnatal Day 7 cardiomyocytes and adult hearts. Furthermore, the intramyocardial delivery of Tnnt2-2D2P-NIL resulted in a sustained improvement in cardiac function without ventricular dilatation, thickened septum, or fatal arrhythmia for at least 4 months. In conclusion, this study highlights the importance of actin remodeling in cardiac regeneration and provides a foundation for new gene-cocktail-therapy approaches to improve cardiac repair and treat heart failure using a novel transient and cardiomyocyte-specific viral construct.
Collapse
Affiliation(s)
- Wenbin Fu
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Wujian Liu
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Chunmei Xu
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing 400042, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, the Third Military Medical University, Chongqing 400042, China
- Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400042, China
| |
Collapse
|
5
|
Vale M, Prochazka J, Sedlacek R. Towards a Cure for Diamond-Blackfan Anemia: Views on Gene Therapy. Cells 2024; 13:920. [PMID: 38891052 PMCID: PMC11172175 DOI: 10.3390/cells13110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.
Collapse
Affiliation(s)
- Matilde Vale
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| |
Collapse
|
6
|
Abouleisa RRE, Tang XL, Ou Q, Salama ABM, Woolard A, Hammouri D, Abdelhafez H, Cayton S, Abdulwali SK, Arai M, Sithu ID, Conklin DJ, Bolli R, Mohamed TMA. Gene therapy encoding cell cycle factors to treat chronic ischemic heart failure in rats. Cardiovasc Res 2024; 120:152-163. [PMID: 38175760 PMCID: PMC10936750 DOI: 10.1093/cvr/cvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 01/06/2024] Open
Abstract
AIMS Gene therapies to induce cardiomyocyte (CM) cell cycle re-entry have shown a potential to treat subacute ischaemic heart failure (IHF) but have not been tested in the more relevant setting of chronic IHF. Our group recently showed that polycistronic non-integrating lentivirus encoding Cdk1/CyclinB1 and Cdk4/CyclinD1 (TNNT2-4Fpolycistronic-NIL) is effective in inducing CM cell cycle re-entry and ameliorating subacute IHF models and preventing the subsequent IHF-induced congestions in the liver, kidneys, and lungs in rats and pigs. Here, we aim to test the long-term efficacy of TNNT2-4Fpolycistronic-NIL in a rat model of chronic IHF, a setting that differs pathophysiologically from subacute IHF and has greater clinical relevance. METHODS AND RESULTS Rats were subjected to a 2-h coronary occlusion followed by reperfusion; 4 weeks later, rats were injected intramyocardially with either TNNT2-4Fpolycistronic-NIL or LacZ-NIL. Four months post-viral injection, TNNT2-4Fpolycistronic-NIL-treated rats showed a significant reduction in scar size and a significant improvement in left ventricular (LV) systolic cardiac function but not in the LV dilatation associated with chronic IHF. A mitosis reporter system developed in our lab showed significant induction of CM mitotic activity in TNNT2-4Fpolycistronic-NIL-treated rats. CONCLUSION This study demonstrates, for the first time, that TNNT2-4Fpolycistronic-NIL gene therapy induces CM cell cycle re-entry in chronic IHF and improves LV function, and that this salubrious effect is sustained for at least 4 months. Given the high prevalence of chronic IHF, these results have significant clinical implications for developing a novel treatment for this deadly disease.
Collapse
Affiliation(s)
- Riham R E Abouleisa
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Xian-Liang Tang
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Qinghui Ou
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Abou-Bakr M Salama
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Cardiovascular Medicine, Faculty of Medicine, Zagazig University, 872 Shaibet an Nakareyah, Zagazig, Al-Sharqia Governorate 7120001, Egypt
| | - Amie Woolard
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Dana Hammouri
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Hania Abdelhafez
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Sarah Cayton
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Sameeha K Abdulwali
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- College of Medicine, Alfaisal University, Interconnection of Al Takhassousi،Al Zahrawi Street, Riyadh 11533, Saudi Arabia
| | - Momo Arai
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- College of Medicine, Alfaisal University, Interconnection of Al Takhassousi،Al Zahrawi Street, Riyadh 11533, Saudi Arabia
| | - Israel D Sithu
- Department of Medicine, Center for Cardiometabolic Science, Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Physiology, School of Medicine, University of Louisville, Louisville, 580 South Preston Street, KY 40202, USA
| | - Daniel J Conklin
- Department of Medicine, Center for Cardiometabolic Science, Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
| | - Tamer M A Mohamed
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Medicine, Center for Cardiometabolic Science, Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY 40202, USA
- Department of Biochemistry Faculty of Pharmacy, Zagazig University, 872 Shaibet an Nakareyah, Zagazig, Zagazig, Al-Sharqia Governorate 7120001, Egypt
- Institute of Cardiovascular Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Surgery Department, Baylor College of Medicine, 6519 Fannin Street, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Saenz-Pipaon G, Dichek DA. Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases. Atherosclerosis 2023; 374:44-54. [PMID: 36577600 PMCID: PMC10277317 DOI: 10.1016/j.atherosclerosis.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Discovered three decades ago, microRNAs (miRNAs) are now recognized as key players in the pathophysiology of multiple human diseases, including those affecting the cardiovascular system. As such, miRNAs have emerged as promising therapeutic targets for preventing the onset and/or progression of several cardiovascular diseases. Anti-miRNA antisense oligonucleotides or "antagomirs" precisely block the activity of specific miRNAs and are therefore a promising therapeutic strategy to repress pathological miRNAs. In this review, we describe advancements in antisense oligonucleotide chemistry that have significantly improved efficacy and safety. Moreover, we summarize recent approaches for the targeted delivery of antagomirs to cardiovascular tissues, highlighting major advantages as well as limitations of viral (i.e., adenovirus, adeno-associated virus, and lentivirus) and non-viral (i.e., liposomes, extracellular vesicles, and polymer nanoparticles) delivery systems. We discuss recent preclinical studies that use targeted antagomir delivery systems to treat three major cardiovascular diseases (atherosclerosis, myocardial infarction, and cardiac hypertrophy, including hypertrophy caused by hypertension), highlighting therapeutic results and discussing challenges that limit clinical applicability.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
9
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
10
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
11
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
12
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Abouleisa RRE, Salama ABM, Ou Q, Tang XL, Solanki M, Guo Y, Nong Y, McNally L, Lorkiewicz PK, Kassem KM, Ahern BM, Choudhary K, Thomas R, Huang Y, Juhardeen HR, Siddique A, Ifthikar Z, Hammad SK, Elbaz AS, Ivey KN, Conklin DJ, Satin J, Hill BG, Srivastava D, Bolli R, Mohamed TMA. Transient Cell Cycle Induction in Cardiomyocytes to Treat Subacute Ischemic Heart Failure. Circulation 2022; 145:1339-1355. [PMID: 35061545 PMCID: PMC9038650 DOI: 10.1161/circulationaha.121.057641] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.
Collapse
Affiliation(s)
- Riham R. E. Abouleisa
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Abou Bakr M. Salama
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
- Faculty of Medicine, Zagazig University, Egypt
| | - Qinghui Ou
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Xian-Liang Tang
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Mitesh Solanki
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Yiru Guo
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Yibing Nong
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Lindsey McNally
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, U.S.A
| | - Pawel K. Lorkiewicz
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, U.S.A
| | - Kamal M. Kassem
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | | | | | | | - Yu Huang
- Gladstone Institute, San Francisco, CA, U.S.A
| | | | - Aisha Siddique
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zainab Ifthikar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Sally K. Hammad
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
- Department of Biochemistry Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ayman S. Elbaz
- Department of Bioengineering, Speed School of Engineering, University of Louisville, KY, U.S.A
| | | | - Daniel J Conklin
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, U.S.A
| | - Jonathan Satin
- Department of Physiology, University of Kentucky, KY, U.S.A
| | - Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, U.S.A
| | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
| | - Tamer M A Mohamed
- From the Institute of Molecular Cardiology, Department of Medicine, University of Louisville, KY, U.S.A
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, KY, U.S.A
- Department of Bioengineering, Speed School of Engineering, University of Louisville, KY, U.S.A
- Department of Pharmacology and Toxicology, University of Louisville, KY, U.S.A
- Institute of Cardiovascular Sciences, University of Manchester, U.K
| |
Collapse
|
14
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
15
|
Chiozzini C, Ridolfi B, Federico M. Extracellular Vesicles and Their Use as Vehicles of Immunogens. Methods Mol Biol 2022; 2504:177-198. [PMID: 35467287 DOI: 10.1007/978-1-0716-2341-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Healthy cells constitutively release lipid bilayered vesicles of different sizes and recognizing different biogenesis, collectively referred to as extracellular vesicles (EVs). EVs can be distinguished in exosomes and microvesicles. Biological and biomedical research on EVs is an emerging field that is rapidly growing. Many EV features including biogenesis, cell uptake, and functions still require unambiguous elucidation. Nevertheless, it has been well established that EVs are involved in communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Here, we summarize most recent findings regarding biogenesis, structure, and functions of both exosomes and microvesicles. In addition, the use of EVs as delivery tools to induce CD8+ T cell immunity is addressed compared to current designs exploiting enveloped viral vectors and virus-like particles. Finally, we describe a both safe and original approach conceived for the induction of strong CTL immunity against antigens uploaded in EVs constitutively released by muscle cells.
Collapse
Affiliation(s)
- Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy.
| | - Barbara Ridolfi
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| |
Collapse
|
16
|
Bhar B, Chouhan D, Pai N, Mandal BB. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:7738-7763. [PMID: 35006758 DOI: 10.1021/acsabm.1c00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of sequential and synchronized events of skin regeneration often results in the impairment of chronic wounds. Conventional wound dressings fail to trigger the normal healing mechanism owing to the pathophysiological conditions. Tissue engineering approaches that deal with the fabrication of dressings using various biomaterials, growth factors, and stem cells have shown accelerated healing outcomes. However, most of these technologies are associated with difficulties in scalability and cost-effectiveness of the products. In this review, we survey the latest developments in wound healing strategies that have recently emerged through the multidisciplinary approaches of bioengineering, nanotechnology, 3D bioprinting, and similar cutting-edge technologies to overcome the limitations of conventional therapies. We also focus on the potential of wearable technology that supports complete monitoring of the changes occurring in the wound microenvironment. In addition, we review the role of advanced devices that can precisely enable the delivery of nanotherapeutics, oligonucleotides, and external stimuli in a controlled manner. These technological advancements offer the opportunity to actively influence the regeneration process to benefit the treatment regime further. Finally, the clinical relevance, trajectory, and prospects of this field have been discussed in brief that highlights their potential in providing a beneficial wound care solution at an affordable cost.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nakhul Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
18
|
Cortijo-Gutiérrez M, Sánchez-Hernández S, Tristán-Manzano M, Maldonado-Pérez N, Lopez-Onieva L, Real PJ, Herrera C, Marchal JA, Martin F, Benabdellah K. Improved Functionality of Integration-Deficient Lentiviral Vectors (IDLVs) by the Inclusion of IS 2 Protein Docks. Pharmaceutics 2021; 13:pharmaceutics13081217. [PMID: 34452178 PMCID: PMC8401568 DOI: 10.3390/pharmaceutics13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.
Collapse
Affiliation(s)
- Marina Cortijo-Gutiérrez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Sabina Sánchez-Hernández
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - María Tristán-Manzano
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Noelia Maldonado-Pérez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Lourdes Lopez-Onieva
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro J. Real
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Personalized Oncology Group, Bio-Health Research Institute (ibs Granada), 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Haematology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Juan Antonio Marchal
- Biomedical Research Institute (ibs. Granada), 18012 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit: Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Francisco Martin
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Karim Benabdellah
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
- Correspondence: ; Tel.: +34-958-715-500
| |
Collapse
|
19
|
Tax Induces the Recruitment of NF-κB to Unintegrated HIV-1 DNA To Rescue Viral Gene Expression and Replication. J Virol 2021; 95:e0028521. [PMID: 33883218 DOI: 10.1128/jvi.00285-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the normally essential step of integration of the HIV-1 proviral DNA intermediate into the host cell genome becomes dispensable in T cells that express the human T cell leukemia virus 1 (HTLV-1) Tax protein, a known activator of cellular NF-κB. The rescue of integrase (IN)-deficient HIV-1 replication by Tax results from the strong activation of transcription from the long terminal repeat (LTR) promoter on episomal HIV-1 DNA, an effect that is closely correlated with the recruitment of activating epigenetic marks, such as H3Ac, and depletion of repressive epigenetic marks, such as H3K9me3, from chromatinized unintegrated proviruses. In addition, activation of transcription from unintegrated HIV-1 DNA coincides with the recruitment of NF-κB to the two NF-κB binding sites found in the HIV-1 LTR enhancer. Here, we report that the recruitment of NF-κB to unintegrated viral DNA precedes, and is a prerequisite for, Tax-induced changes in epigenetic marks, so that an IN- HIV-1 mutant lacking both LTR NF-κB sites is entirely nonresponsive to Tax and fails to undergo the epigenetic changes listed above. Interestingly, we found that induction of Tax expression at 24 h postinfection, when unintegrated HIV-1 DNA is already fully repressed by inhibitory chromatin modifications, is able to effectively reverse the epigenetic silencing of that DNA and rescue viral gene expression. Finally, we report that heterologous promoters introduced into IN-deficient HIV-1-based vectors are transcriptionally active even in the absence of Tax and do not increase their activity when the HIV-1 promoter and enhancer, located in the LTR U3 region, are deleted, as has been recently proposed. IMPORTANCE Integrase-deficient expression vectors based on HIV-1 are becoming increasingly popular as tools for gene therapy in vivo due to their inability to cause insertional mutagenesis. However, many IN- lentiviral vectors are able to achieve only low levels of gene expression, and methods to increase this low level have not been extensively explored. Here, we analyzed how the HTLV-1 Tax protein is able to rescue the replication of IN- HIV-1 in T cells, and we describe IN- lentiviral vectors, lacking any inserted origin of replication, that are able to express a heterologous gene effectively.
Collapse
|
20
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
21
|
Chemogenetics a robust approach to pharmacology and gene therapy. Biochem Pharmacol 2020; 175:113889. [DOI: 10.1016/j.bcp.2020.113889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
|
22
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Mackey LC, Annab LA, Yang J, Rao B, Kissling GE, Schurman SH, Dixon D, Archer TK. Epigenetic Enzymes, Age, and Ancestry Regulate the Efficiency of Human iPSC Reprogramming. Stem Cells 2018; 36:1697-1708. [PMID: 30152570 DOI: 10.1002/stem.2899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
Epigenetic enzymes regulate higher-order chromatin architecture and cell-type specific gene expression. The ATPase BRG1 and the SWI/SNF chromatin remodeling complex are epigenetic enzymes that regulate chromatin accessibility during steady and transitional cell states. Experiments in mice show that the loss of BRG1 inhibits cellular reprogramming, while studies using human cells demonstrate that the overexpression of BRG1 enhances reprogramming. We hypothesized that the variation of SWI/SNF subunit expression in the human population would contribute to variability in the efficiency of induced pluripotent stem cells (iPSC) reprogramming. To examine the impact of an individual's sex, ancestry, and age on iPSC reprogramming, we created a novel sex and ancestry balanced cohort of 240 iPSC lines derived from human dermal fibroblasts (DF) from 80 heathy donors. We methodically assessed the reprogramming efficiency of each DF line and then quantified the individual and demographic-specific variations in SWI/SNF chromatin remodeling proteins and mRNA expression. We identified BRG1, BAF155, and BAF60a expression as strongly correlating with iPSC reprogramming efficiency. Additionally, we discovered that high efficiency iPSC reprograming is negatively correlated with donor age, positively correlated with African American descent, and uncorrelated with donor sex. These results show the variations in chromatin remodeling protein expression have a strong impact on iPSC reprogramming. Additionally, our cohort is unique in its large size, diversity, and focus on healthy donors. Consequently, this cohort can be a vital tool for researchers seeking to validate observational results from human population studies and perform detailed mechanistic studies in a controlled cell culture environment. Stem Cells 2018;36:1697-1708.
Collapse
Affiliation(s)
- Lantz C Mackey
- Epigenetics & Stem Cell Biology Laboratory, Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Lois A Annab
- Epigenetics & Stem Cell Biology Laboratory, Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Jun Yang
- Epigenetics & Stem Cell Biology Laboratory, Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Bhargavi Rao
- Epigenetics & Stem Cell Biology Laboratory, Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Grace E Kissling
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Shepard H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Darlene Dixon
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Trevor K Archer
- Epigenetics & Stem Cell Biology Laboratory, Chromatin & Gene Expression Group, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| |
Collapse
|
24
|
Hamilton AM, Foster PJ, Ronald JA. Evaluating Nonintegrating Lentiviruses as Safe Vectors for Noninvasive Reporter-Based Molecular Imaging of Multipotent Mesenchymal Stem Cells. Hum Gene Ther 2018; 29:1213-1225. [DOI: 10.1089/hum.2018.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amanda M. Hamilton
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
| | - John A. Ronald
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
- Medical Biophysics, University of Western Ontario, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
25
|
Ajina A, Maher J. Strategies to Address Chimeric Antigen Receptor Tonic Signaling. Mol Cancer Ther 2018; 17:1795-1815. [PMID: 30181329 PMCID: PMC6130819 DOI: 10.1158/1535-7163.mct-17-1097] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/19/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Adoptive cell transfer using chimeric antigen receptors (CAR) has emerged as one of the most promising new therapeutic modalities for patients with relapsed or refractory B-cell malignancies. Thus far, results in patients with advanced solid tumors have proven disappointing. Constitutive tonic signaling in the absence of ligand is an increasingly recognized complication when deploying these synthetic fusion receptors and can be a cause of poor antitumor efficacy, impaired survival, and reduced persistence in vivo In parallel, ligand-dependent tonic signaling can mediate toxicity and promote T-cell anergy, exhaustion, and activation-induced cell death. Here, we review the mechanisms underpinning CAR tonic signaling and highlight the wide variety of effects that can emerge after making subtle structural changes or altering the methodology of CAR transduction. We highlight strategies to prevent unconstrained tonic signaling and address its deleterious consequences. We also frame this phenomenon in the context of endogenous TCR tonic signaling, which has been shown to regulate peripheral tolerance, facilitate the targeting of foreign antigens, and suggest opportunities to coopt ligand-dependent CAR tonic signaling to facilitate in vivo persistence and efficacy. Mol Cancer Ther; 17(9); 1795-815. ©2018 AACR.
Collapse
MESH Headings
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adam Ajina
- CAR Mechanics Group, King's College London, London, United Kingdom.
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
| | - John Maher
- CAR Mechanics Group, King's College London, London, United Kingdom
- School of Cancer and Pharmaceutical Studies, Guy's Hospital, London, United Kingdom
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|
26
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
27
|
Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal Stromal/Stem Cells: A New Era in the Cell-Based Targeted Gene Therapy of Cancer. Front Immunol 2017; 8:1770. [PMID: 29326689 PMCID: PMC5741703 DOI: 10.3389/fimmu.2017.01770] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, in light of the promising potentials of mesenchymal stromal/stem cells (MSCs) for carrying therapeutic anticancer genes, a complete revisitation on old chemotherapy-based paradigms has been established. This review attempted to bring forward and introduce the novel therapeutic opportunities of using genetically engineered MSCs. The simplicities and advantages of MSCs for medical applications make them a unique and promising option in the case of cancer therapy. Some of the superiorities of using MSCs as therapeutic gene micro-carriers are the easy cell-extraction procedures and their abundant proliferation capacity in vitro without losing their main biological properties. Targeted therapy by using MSCs as the delivery vehicles of therapeutic genes is a new approach in the treatment of various types of cancers. Some of the distinct properties of MSCs, such as tumor-tropism, non-immunogenicity, stimulatory effect on the anti-inflammatory molecules, inhibitory effect on inflammatory responses, non-toxicity against the normal tissues, and easy processes for the clinical use, have formed the basis of attention to MSCs. They can be easily used for the treatment of damaged or injured tissues, regenerative medicine, and immune disorders. This review focused on the drugability of MSCs and their potential for the delivery of candidate anticancer genes. It also briefly reviewed the vectors and methods used for MSC-mediated gene therapy of malignancies. Also, the challenges, limitations, and considerations in using MSCs for gene therapy of cancer and the new methods developed for resolution of these problems are reviewed.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Biglari
- Department of Genetics and Molecular Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
28
|
Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1235-1244. [PMID: 28726562 DOI: 10.1080/14712598.2017.1356817] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.
Collapse
Affiliation(s)
- Nicholas A Moore
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peter Bracha
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Rehan M Hussain
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nuria Morral
- c Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
29
|
Ludwig LS, Khajuria RK, Sankaran VG. Emerging cellular and gene therapies for congenital anemias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:332-348. [PMID: 27792859 DOI: 10.1002/ajmg.c.31529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc.
Collapse
|
30
|
Attacking HIV-1 RNA versus DNA by sequence-specific approaches: RNAi versus CRISPR-Cas. Biochem Soc Trans 2016; 44:1355-1365. [DOI: 10.1042/bst20160060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 01/02/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection can be effectively controlled by potent antiviral drugs, but this never results in a cure. The patient should therefore take these drugs for the rest of his/her life, which can cause drug-resistance and adverse effects. Therefore, more durable therapeutic strategies should be considered, such as a stable gene therapy to protect the target T cells against HIV-1 infection. The development of potent therapeutic regimens based on the RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR-Cas) mechanisms will be described, which can be delivered by lentiviral vectors. These mechanisms attack different forms of the viral genome, the RNA and DNA, respectively, but both mechanisms act in a strictly sequence-specific manner. Early RNAi experiments demonstrated profound virus inhibition, but also indicated that viral escape is possible. Such therapy failure can be prevented by the design of a combinatorial RNAi attack on the virus and this gene therapy is currently being tested in a preclinical humanized mouse model. Recent CRISPR-Cas studies also document robust virus inhibition, but suggest a novel viral escape route that is induced by the cellular nonhomologous end joining DNA repair pathway, which is activated by CRISPR-Cas-induced DNA breaks. We will compare these two approaches for durable HIV-1 suppression and discuss the respective advantages and disadvantages. The potential for future clinical applications will be described.
Collapse
|
31
|
Morgan RA, Boyerinas B. Genetic Modification of T Cells. Biomedicines 2016; 4:biomedicines4020009. [PMID: 28536376 PMCID: PMC5344249 DOI: 10.3390/biomedicines4020009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Gene transfer technology and its application to human gene therapy greatly expanded in the last decade. One area of investigation that appears particularly promising is the transfer of new genetic material into T cells for the potential treatment of cancer. Herein, we describe several core technologies that now yield high-efficiency gene transfer into primary human T cells. These gene transfer techniques include viral-based gene transfer methods based on modified Retroviridae and non-viral methods such as DNA-based transposons and direct transfer of mRNA by electroporation. Where specific examples are cited, we emphasize the transfer of chimeric antigen receptors (CARs) to T cells, which permits engineered T cells to recognize potential tumor antigens.
Collapse
|
32
|
Transient Expression of Green Fluorescent Protein in Integrase-Defective Lentiviral Vector-Transduced 293T Cell Line. Methods Mol Biol 2016; 1448:159-73. [PMID: 27317180 DOI: 10.1007/978-1-4939-3753-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-integrating lentiviral vectors or also known as integrase-defective lentiviral (IDLV) hold a great promise for gene therapy application. They retain high transduction efficiency for efficient gene transfer in various cell types both in vitro and in vivo. IDLV is produced via a combined mutations introduced on the HIV-based lentiviral to disable their integration potency. Therefore, IDLV is considered safer than the wild-type integrase-proficient lentiviral vector as they could avoid the potential insertional mutagenesis associated with the nonspecific integration of transgene into target cell genome afforded by the wild-type vectors.Here we describe the system of IDLV which is produced through mutation in the integrase enzymes at the position of D64 located within the catalytic core domain. The efficiency of the IDLV in expressing the enhanced green fluorescent protein (GFP) reporter gene in transduced human monocyte (U937) cell lines was investigated. Expression of the transgene was driven by the spleen focus-forming virus (SFFV) LTRs. Transduction efficiency was studied using both the IDLV (ID-SFFV-GFP) and their wild-type counterparts (integrase-proficient SFFV-GFP). GFP expression was analyzed by fluorescence microscope and FACS analysis.Based on the results, the number of the GFP-positive cells in ID-SFFV-GFP-transduced U937 cells decreased rapidly over time. The percentage of GFP-positive cells decreased from ~50 % to almost 0, up to 10 days post-transduction. In wild-type SFFV-GFP-transduced cells, GFP expression is remained consistently at about 100 %. These data confirmed that the transgene expression in the ID-SFFV-GFP-transduced cells is transient in dividing cells. The lack of an origin of replication due to mutation of integrase enzymes in the ID-SFFV-GFP virus vector has caused the progressive loss of the GFP expression in dividing cells.Integrase-defective lentivirus will be a suitable choice for safer clinical applications. It preserves the advantages of the wild-type lentiviral vectors but with the benefit of transgene expression without stable integration into host genome, therefore reducing the potential risk of insertional mutagenesis.
Collapse
|
33
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Sundarasetty BS, Kloess S, Oberschmidt O, Naundorf S, Kuehlcke K, Daenthanasanmak A, Gerasch L, Figueiredo C, Blasczyk R, Ruggiero E, Fronza R, Schmidt M, von Kalle C, Rothe M, Ganser A, Koehl U, Stripecke R. Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation. J Transl Med 2015. [PMID: 26198406 PMCID: PMC4511080 DOI: 10.1186/s12967-015-0599-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Reactivation of latent viruses such as human cytomegalovirus (HCMV) after allogeneic hematopoietic stem cell transplantation (HSCT) results in high morbidity and mortality. Effective immunization against HCMV shortly after allo-HSCT is an unmet clinical need due to delayed adaptive T cell development. Donor-derived dendritic cells (DCs) have a critical participation in stimulation of naïve T cells and immune reconstitution, and therefore adoptive DC therapy could be used to protect patients after HSCT. However, previous methods for ex vivo generation of adoptive donor-derived DCs were complex and inconsistent, particularly regarding cell viability and potency after thawing. We have previously demonstrated in humanized mouse models of HSCT the proof-of-concept of a novel modality of lentivirus-induced DCs (“SmyleDCpp65”) that accelerated antigen-specific T cell development. Methods Here we demonstrate the feasibility of good manufacturing practices (GMP) for production of donor-derived DCs consisting of monocytes from peripheral blood transduced with an integrase-defective lentiviral vector (IDLV, co-expressing GM-CSF, IFN-α and the cytomegalovirus antigen pp65) that were cryopreserved and thawed. Results Upscaling and standardized production of one lot of IDLV and three lots of SmyleDCpp65 under GMP-compliant conditions were feasible. Analytical parameters for quality control of SmyleDCpp65 identity after thawing and potency after culture were defined. Cell recovery, uniformity, efficacy of gene transfer, purity and viability were high and consistent. SmyleDCpp65 showed only residual and polyclonal IDLV integration, unbiased to proto-oncogenic hot-spots. Stimulation of autologous T cells by GMP-grade SmyleDCpp65 was validated. Conclusion These results underscore further developments of this individualized donor-derived cell vaccine to accelerate immune reconstitution against HCMV after HSCT in clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0599-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bala Sai Sundarasetty
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Stephan Kloess
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Olaf Oberschmidt
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | | | | | - Anusara Daenthanasanmak
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Laura Gerasch
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Constanca Figueiredo
- REBIRTH, Tolerogenic Cell Therapy, Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| | - Rainer Blasczyk
- REBIRTH, Tolerogenic Cell Therapy, Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| | - Eliana Ruggiero
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Raffaele Fronza
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Manfred Schmidt
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Christof von Kalle
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany.
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Ulrike Koehl
- Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Renata Stripecke
- REBIRTH, Regenerative Immune Therapies Applied, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany. .,Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
35
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
36
|
Stripecke R. Lentivirus-Induced Dendritic Cells (iDC) for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation. Biomedicines 2014; 2:229-246. [PMID: 28548069 PMCID: PMC5344221 DOI: 10.3390/biomedicines2030229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/27/2022] Open
Abstract
Conventional dendritic cells (cDC) are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN), where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV) gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC) effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2), and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65). The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.
Collapse
Affiliation(s)
- Renata Stripecke
- Regenerative Immune Therapies Applied, Excellence Cluster Rebirth, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|