1
|
Zheng M, Liu W, Zhang R, Jiang D, Shi Y, Wu Y, Ge F, Chen C. E3 ubiquitin ligase BCA2 promotes breast cancer stemness by up-regulation of SOX9 by LPS. Int J Biol Sci 2024; 20:2686-2697. [PMID: 38725852 PMCID: PMC11077363 DOI: 10.7150/ijbs.92338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Min Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Rou Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Fei Ge
- The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
2
|
Chen J, Liu J, Zeng P, Zhao C, Liu X, Sun J, Wang J, Fang P, Chen W, Ding J. Estrogen and BRCA1 deficiency synergistically induce breast cancer mutation-related DNA damage. Biochem Biophys Res Commun 2022; 613:140-145. [PMID: 35561581 DOI: 10.1016/j.bbrc.2022.04.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 02/08/2023]
Abstract
Estrogen (E2) is crucial for the development of breast cancer caused by BRCA1 mutation, and can increase the DNA damage in BRCA1-deficient cells. However, the mechanisms through which BRCA1 deficiency and E2 synergistically induce DNA damage remains unclear. In this study, we analyzed the distribution of DNA damage in E2-treated BRCA1-deficient cells. We detected DNA lesions in the vicinity of genes that are transcriptionally activated by estrogen receptor-α (ER). Loss of BRCA1 altered chromatin binding by ER, which significantly affected the distribution of DNA damage. Moreover, these changes were associated with the established mutations in BRCA1-mutant breast cancer. Taken together, our findings reveal a new mechanism underlying the DNA damage in breast cancer cells that is synergistically induced by BRCA1 deficiency and E2.
Collapse
Affiliation(s)
- Jiahao Chen
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China; Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingxin Liu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China; Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengguihang Zeng
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cai Zhao
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liu
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jun Sun
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jia Wang
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Peihang Fang
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wenjie Chen
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Junjun Ding
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510630, China; Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang MX, Liuyu T, Zhang ZD. Multifaceted Roles of the E3 Ubiquitin Ligase RING Finger Protein 115 in Immunity and Diseases. Front Immunol 2022; 13:936579. [PMID: 35844553 PMCID: PMC9279554 DOI: 10.3389/fimmu.2022.936579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Ubiquitination is a post-translational modification that plays essential roles in various physiological and pathological processes. Protein ubiquitination depends on E3 ubiquitin ligases that catalyze the conjugation of ubiquitin molecules on lysine residues of targeted substrates. RING finger protein 115 (RNF115), also known as breast cancer associated gene 2 (BCA2) and Rab7-interacting RING finger protein (Rabring7), has been identified as a highly expressed protein in breast cancer cells and tissues. Later, it has been demonstrated that RNF115 catalyzes ubiquitination of a series of proteins to modulate a number of signaling pathways, and thereby regulates viral infections, autoimmunity, cell proliferation and death and tumorigenesis. In this review, we introduce the identification, expression and activity regulation of RNF115, summarize the substrates and functions of RNF115 in different pathways, and discuss the roles of RNF115 as a biomarker or therapeutic target in diseases.
Collapse
Affiliation(s)
- Mei-Xia Wang
- The Executive Master of Business Administration (EMBA) Program, School of Management, Fudan University, Shanghai, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
5
|
Abstract
Breast cancer, a malignant tumor originating from mammary epithelial tissue, is the most common cancer among women worldwide. Challenges facing the diagnosis and treatment of breast cancer necessitate the search for new mechanisms and drugs to improve outcomes. Estrogen receptor (ER) is considered to be important for determining the diagnosis and treatment strategy. The discovery of the second estrogen receptor, ERβ, provides an opportunity to understand estrogen action. The emergence of ERβ can be traced back to 1996. Over the past 20 years, an increasing body of evidence has implicated the vital effect of ERβ in breast cancer. Although there is controversy among scholars, ERβ is generally thought to have antiproliferative effects in disease progression. This review summarizes available evidence regarding the involvement of ERβ in the clinical treatment and prognosis of breast cancer and describes signaling pathways associated with ERβ. We hope to highlight the potential of ERβ as a therapeutic target.
Collapse
|
6
|
Zhang R, Liu W, Sun J, Kong Y, Chen C. Roles of RNF126 and BCA2 E3 ubiquitin ligases in DNA damage repair signaling and targeted cancer therapy. Pharmacol Res 2020; 155:104748. [DOI: 10.1016/j.phrs.2020.104748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
7
|
Prolonged use of finasteride-induced gonadal sex steroids alterations, DNA damage and menstrual bleeding in women. Biosci Rep 2020; 40:221928. [PMID: 31967291 PMCID: PMC7007407 DOI: 10.1042/bsr20191434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to examine the effect of prolonged use of finasteride on serum levels of dihydrotestosterone (DHT), estradiol (E2), progesterone, testosterone and androstenedione in women during the menstrual period. Further, to screen and compare the 5α-reductase activities through the expression of SRD5A1, SRD5A2 and AR gene and to determine the level of VEGF, VKOR and SAA gene expression and DNA damage. A total of 30 Saudi women aged between 25 and 35 years were enrolled in the study. The selected women were divided into two groups. The first group (n = 15) received 5 mg finasteride/day for prolonged period of one year and second group (n = 15) was taken as a healthy control. ELISA technique was used for measuring the serum levels of the targeted hormones, and Comet assay was used for checking the DNA integrity. Our findings revealed significant decrement of DHT, E2, progesterone and androstenedione levels and elevated levels of testosterone in group treated with daily oral doses of 5 mg finasteride/day compared with the control subjects. mRNA expression suggested that finasteride has concrete effects on the gene expression of the selected genes from the treated group in comparison with the control group. In addition, finasteride induced DNA damage, and heavy menstrual bleeding was noted in women treated with finasteride. In conclusion, the present findings revealed that finasteride has adverse health effects in women associated with gonadal sex steroids alterations, DNA damage and heavy menstrual bleeding with no consensus in the treatment of androgenetic alopecia in women.
Collapse
|
8
|
Zhou M, Sareddy GR, Li M, Liu J, Luo Y, Venkata PP, Viswanadhapalli S, Tekmal RR, Brenner A, Vadlamudi RK. Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways. Sci Rep 2019; 9:6124. [PMID: 30992459 PMCID: PMC6467924 DOI: 10.1038/s41598-019-42313-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed brain tumor that exhibit high mortality rate and chemotherapy resistance is a major clinical problem. Recent studies suggest that estrogen receptor beta (ERβ), may function as a tumor suppressor in GBM. However, the mechanism(s) by which ERβ contributes to GBM suppression and chemotherapy response remains unknown. We examined the role of ERβ in the DNA damage response of GBM cells, and tested whether ERβ sensitizes GBM cells to chemotherapy. Cell viability and survival assays using multiple epitope tagged ERβ expressing established and primary GBM cells demonstrated that ERβ sensitizes GBM cells to DNA damaging agents including temozolomide (TMZ). RNA-seq studies using ERβ overexpression models revealed downregulation of number of genes involved in DNA recombination and repair, ATM signaling and cell cycle check point control. Gene set enrichment analysis (GSEA) suggested that ERβ–modulated genes were correlated negatively with homologous recombination, mismatch repair and G2M checkpoint genes. Further, RT-qPCR analysis revealed that chemotherapy induced activation of cell cycle arrest and apoptosis genes were attenuated in ERβKO cells. Additionally, ERβ overexpressing cells had a higher number of γH2AX foci following TMZ treatment. Mechanistic studies showed that ERβ plays an important role in homologous recombination (HR) mediated repair and ERβ reduced expression and activation of ATM upon DNA damage. More importantly, GBM cells expressing ERβ had increased survival when compared to control GBM cells in orthotopic GBM models. ERβ overexpression further enhanced the survival of mice to TMZ therapy in both TMZ sensitive and TMZ resistant GBM models. Additionally, IHC analysis revealed that ERβ tumors had increased expression of γH2AX and cleaved caspase-3. Using ERβ-overexpression and ERβ-KO GBM model cells, we have provided the evidence that ERβ is required for optimal chemotherapy induced DNA damage response and apoptosis in GBM cells.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Gastroenterology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Respiratory Medicine, Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Jinyou Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of Oncology, The Second Xiangya hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha Shi, Hunan, 410008, P. R. China
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Andrew Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Wymant JM, Hiscox S, Westwell AD, Urbé S, Clague MJ, Jones AT. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer 2016; 7:2388-2407. [PMID: 27994678 PMCID: PMC5166551 DOI: 10.7150/jca.15055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/14/2016] [Indexed: 12/24/2022] Open
Abstract
Breast Cancer Associated gene 2 (BCA2) is an E3 ubiquitin ligase that is over-expressed in >50% of primary breast cancers, and has been shown to increase in vitro cell proliferation and invasion. The protein has been linked to alterations in EGFR degradation; however there is some dispute as to its role and influence on the biology of this receptor. Our work aimed to ascertain the role of BCA2 in EGFR endocytosis and down-regulation and to examine its links with breast cancer outcome. Data generated with the online expression analysis tool KM-Plotter showed that high BCA2 levels are associated with poor prognosis in ovarian, gastric and breast cancer, particularly HER2 over-expressing breast cancers. Experimentally, we demonstrate that over-expression of BCA2 induced a reduction in total EGFR levels. BCA2 over-expressing cells stimulated with EGF exhibited reduced lysosomal degradation of both this ligand and its receptor. Signalling downstream of EGFR in BCA2 over-expressing cells was characterized by a lower magnitude but increased duration. Our findings support a role for BCA2 in receptor endocytosis. Consistent with this we show that BCA2 over-expression reduces the level of vesicle-associated Rab7, a regulator of late endocytosis and documented interaction partner of BCA2. Levels of transferrin receptor and the uptake of transferrin were unaltered by over-expression of BCA2 indicating that trafficking changes may be limited to late endocytic sorting events. This report offers a thorough exploration of BCA2 biology and suggests a context-dependent role for the protein in the endocytic regulation of EGFR and as a prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Jennifer M Wymant
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Stephen Hiscox
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Andrew D Westwell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Sylvie Urbé
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, England, U.K
| | - Michael J Clague
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, England, U.K
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| |
Collapse
|