1
|
Zhao Y, Le TMD, Hong J, Jiao A, Yoon AR, Yun CO. Smart Accumulating Dual-Targeting Lipid Envelopes Equipping Oncolytic Adenovirus for Enhancing Cancer Gene Therapeutic Efficacy. ACS NANO 2024; 18:27869-27890. [PMID: 39356167 DOI: 10.1021/acsnano.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Systemic delivery of oncolytic adenovirus (oAd) for cancer gene therapy must overcome several limitations such as rapid clearance from the blood, nonspecific accumulation in the liver, and insufficient delivery to the tumor tissues. In the present report, a tumor microenvironment-triggered artificial lipid envelope composed of a pH-responsive sulfamethazine-based polymer (PUSSM)-conjugated phospholipid (DOPE-HZ-PUSSM) and another lipid decorated with epidermal growth factor receptor (EGFR) targeting peptide (GE11) (GE11-DOPE) was utilized to encapsulate replication-incompetent Ad (dAd) or oAd coexpressing short-hairpin RNA (shRNA) against Wnt5 (shWnt5) and decorin (dAd/LP-GE-PS or oAd/LP-GE-PS, respectively). In vitro studies demonstrated that dAd/LP-GE-PS transduced breast cancer cells in a pH-responsive and EGFR-specific manner, showing a higher level of transduction than naked Ad under a mildly acidic pH of 6.0 in EGFR-positive cell lines. In vivo biodistribution analyses revealed that systemic administration of oAd/LP-GE-PS leads to a significantly higher level of intratumoral virion accumulation compared to naked oAd, oAd encapsulated in a liposome without PUSSM or EGFR targeting peptide moiety (oAd/LP), or oAd encapsulated in a liposome with EGFR targeting peptide alone (oAd/LP-GE) in an EGFR overexpressing MDA-MB-468 breast tumor xenograft model, showing that both pH sensitivity and EGFR targeting ability were integral to effective systemic delivery of oAd. Further, systemic administration of all liposomal oAd formulations (oAd/LP, oAd/LP-GE, and oAd/LP-GE-PS) showed significantly attenuated hepatic accumulation of the virus compared to naked oAd. Collectively, our findings demonstrated that pH-sensitive and EGFR-targeted liposomal systemic delivery of oAd can be a promising strategy to address the conventional limitations of oAd to effectively treat EGFR-positive cancer in a safe manner.
Collapse
Affiliation(s)
- Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jinwoo Hong
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| |
Collapse
|
2
|
Switala L, Di L, Gao H, Asase C, Klos M, Rengasamy P, Fedyukina D, Maiseyeu A. Engineered nanoparticles promote cardiac tropism of AAV vectors. J Nanobiotechnology 2024; 22:223. [PMID: 38702815 PMCID: PMC11067271 DOI: 10.1186/s12951-024-02485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.
Collapse
Affiliation(s)
- Lauren Switala
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Lin Di
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Huiyun Gao
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA
| | - Courteney Asase
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA
| | - Matthew Klos
- Department of Pediatrics, Case Western Reserve University, Cleveland, USA
| | - Palanivel Rengasamy
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA
| | - Daria Fedyukina
- Bioheights LLC, Cleveland, USA
- Advanced Research Projects Agency for Health, ARPA-H, Washington, USA
| | - Andrei Maiseyeu
- Department of Medicine, School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
3
|
Kasala D, Hong J, Yun CO. Overcoming the barriers to optimization of adenovirus delivery using biomaterials: Current status and future perspective. J Control Release 2021; 332:285-300. [PMID: 33626335 DOI: 10.1016/j.jconrel.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
Adenovirus (Ad) is emerging as a promising modality for cancer gene therapy due to its ability to induce high level of therapeutic transgene expression with no risk of insertional mutagenesis, ability to be facilely produced at a high titer, and capacity to induce robust antitumor immune response. Despite these excellent attributes of human serotype 5 Ad, poor systemic administration capability, coxsackie and adenovirus receptor (CAR)-dependent endocytic mechanism limiting potentially targetable cell types, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances toward maximizing the therapeutic benefit of Ad in clinical setting. To address the abovementioned shortcomings, various non-immunogenic nanomaterials have been explored to modify Ad surface via physical or chemical interactions. In this review, we summarize the recent developments of different types of nanomaterials that had been utilized for modification of Ad and how tumor-targeted local and system delivery can be achieved with these nanocomplexes. Finally, we conclude by highlighting the key features of various nanomaterials-coated Ads and their prospects to optimize the delivery of virus.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea.
| |
Collapse
|
4
|
Krutzke L, Allmendinger E, Hirt K, Kochanek S. Chorioallantoic Membrane Tumor Model for Evaluating Oncolytic Viruses. Hum Gene Ther 2020; 31:1100-1113. [PMID: 32552215 PMCID: PMC7585625 DOI: 10.1089/hum.2020.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
Oncolytic viruses are promising anticancer agents; however, regarding their clinical efficacy, there is still significant scope for improvement. Preclinical in vivo evaluation of oncolytic viruses is mainly based on syngeneic or xenograft tumor models in mice, which is labor-intensive and time-consuming. Currently, a large proportion of developmental work in the research field of oncolytic viruses is directed toward overcoming cellular and noncellular barriers to achieve improved virus delivery to primary tumors and metastases. To evaluate the large number of genetically or chemically modified viruses regarding tumor delivery and biodistribution patterns, it would be valuable to have an in vivo model available that would allow easy screening experiments, that is of higher complexity than monoclonal cell lines, and that could be used as a platform method before confirmatory studies in small and large animals. Based on our data, we believe that the chicken chorioallantoic membrane (CAM) assay is a quick and low-cost high-throughput tumor model system for the in vivo analysis of oncolytic viruses. Here we describe the establishment, careful characterization, and optimization of the CAM model as an in vivo model for the evaluation of oncolytic viruses. We have used human adenovirus type 5 (HAdV-5) as an example for validation but are confident that the model can be used as a test system for replicating viruses of many different virus families. We show that the CAM tumor model enables intratumoral and intravenous virus administration and is a feasible and conclusive model for the analysis of relevant virus-host interactions, biodistribution patterns, and tumor-targeting profiles.
Collapse
Affiliation(s)
- Lea Krutzke
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | | | - Katja Hirt
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | | |
Collapse
|
5
|
Systemic delivery and SPECT/CT in vivo imaging of 125I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Sci Rep 2019; 9:12840. [PMID: 31492884 PMCID: PMC6731255 DOI: 10.1038/s41598-019-49150-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Early phase clinical trials have demonstrated good therapeutic index for oncolytic adenoviruses in patients with solid tumours when administered intratumorally, resulting in local tumour elimination. Entrapment and binding of adenovirus to erythrocytes, blood factors, and neutralising antibodies have prevented efficient systemic delivery and targeting of distant lesions in the clinic. We previously generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by increasing the viral dose at distant sites. Here, we developed a protocol to directly radiolabel the virus for rapid and sensitive detection by single-photon emitted computed tomography (SPECT/CT) providing a convenient method for determining biodistribution following intravenous administration in murine models. Longitudinal whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and Panc04.03 xenografts with trace amounts of 125I-Ad-3∆-A20T up to 48 h after tail vein delivery. Hepatic and splenic radioactivity decreased over time. Analysis of tissues harvested at the end of the study, confirmed potency and selectivity of mutant viruses. Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct radiolabeling approach, allows for immediate screening of novel oncolytic adenoviruses and selection of optimal viral genome alterations to generate improved mutants.
Collapse
|
6
|
Guo ZS, Bartlett DL. Editorial of the Special Issue: Oncolytic Viruses as a Novel Form of Immunotherapy for Cancer. Biomedicines 2017; 5:biomedicines5030052. [PMID: 28837095 PMCID: PMC5618310 DOI: 10.3390/biomedicines5030052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs), either occurring naturally or through genetic engineering, can selectively infect, replicate in, and kill cancer cells, while leaving normal cells (almost) unharmed [...].
Collapse
Affiliation(s)
- Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|