1
|
Yu Y, Fan Y, Mei W, Xu X, Chen Y, Zhao Y, Ruan B, Shen Z, Lu Y, Zheng S, Jie W. Dendrobium nobile active ingredient Dendrobin A against hepatocellular carcinoma via inhibiting nuclear factor kappa-B signaling. Biomed Pharmacother 2024; 177:117013. [PMID: 38901205 DOI: 10.1016/j.biopha.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Dendrobin A, a typical active ingredient of the traditional Chinese medicine Dendrobium nobile, has potential clinical application in cancer treatment; however, its effect and mechanism in anti-hepatocellular carcinoma (HCC) remain unsolved. METHOD The effects of Dendrobin A on the viability, migration, invasion, cycle, apoptosis, and epithelial-mesenchymal transition of HepG2 and SK-HEP-1 cells were verified by in vitro experiments. mRNA sequencing was performed to screen the differentially expressed genes (DEGs) of HCC cells before and after Dendrobin A treatment, following GO enrichment and KEGG signaling pathway analyses. Mechanistically, molecular docking was used to evaluate the binding of Dendrobin A with proteins p65 and p50, before further verifying the activation of nuclear factor kappa-B (NF-κB) signaling. Finally, the antiproliferative effect of Dendrobin A on HCC cells was explored through animal experiments. RESULTS Dendrobin A arrested cell cycle, induced apoptosis, and inhibited proliferation, migration, invasion, and blocked epithelial-mesenchymal transition in HepG2 and SK-HEP-1 cells. mRNA sequencing identified 830 DEGs, involving various biological processes. KEGG analysis highlighted NF-κB signaling. Molecular docking revealed strong binding of Dendrobin A with p65 and p50 proteins, and western blotting confirmed reduced levels of p-p65 and p-p50 in HCC cells post Dendrobin A treatment. NF-κB agonist PMA reversed Dendrobin A-inhibited cell proliferation migration and invasion. In vivo experiments showed that Dendrobin A inhibited HCC cell growth. CONCLUSION Our findings suggest that Dendrobin A exhibits anti-HCC properties by inhibiting the activation of the NF-κB pathway. These results provide a scientific basis for utilizing Dendrobium nobile in anti-HCC therapies.
Collapse
Affiliation(s)
- Yaping Yu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yonghao Fan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Wenli Mei
- Key Laboratory of Natural Products Research and Development from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571199, PR China
| | - Xiaoqing Xu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Yangyang Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Banzhan Ruan
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Zhihua Shen
- Department of Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yanda Lu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Wei Jie
- Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases & the Department of Oncology of the First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| |
Collapse
|
2
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Ahsan H, Malik SI, Shah FA, El-Serehy HA, Ullah A, Shah ZA. Celecoxib Suppresses NF-κB p65 (RelA) and TNFα Expression Signaling in Glioblastoma. J Clin Med 2023; 12:6683. [PMID: 37892820 PMCID: PMC10607796 DOI: 10.3390/jcm12206683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) harbors significant genetic heterogeneity, high infiltrative capacity, and patterns of relapse following many therapies. The expression of nuclear factor kappa-B (NF-κB p65 (RelA)) and signaling pathways is constitutively activated in GBM through inflammatory stimulation such as tumor necrosis factor-alpha (TNFα), cell invasion, motility, abnormal physiological stimuli, and inducible chemoresistance. However, the underlying anti-tumor and anti-proliferative mechanisms of NF-κB p65 (RelA) and TNFα are still poorly defined. This study aimed to investigate the expression profiling of NF-κB p65 (RelA) and TNFα as well as the effectiveness of celecoxib along with temozolomide (TMZ) in reducing the growth of the human GBM cell line SF-767. METHODS genome-wide expression profiling, enrichment analysis, immune infiltration, quantitative expression, and the Microculture Tetrazolium Test (MTT) proliferation assay were performed to appraise the effects of celecoxib and TMZ. RESULTS demonstrated the upregulation of NF-κB p65 (RelA) and TNFα and celecoxib reduced the viability of the human glioblastoma cell line SF-767, cell proliferation, and NF-κB p65 (RelA) and TNFα expression in a dose-dependent manner. Overall, these findings demonstrate for the first time how celecoxib therapy could mitigate the invasive characteristics of the human GBM cell line SF-767 by inhibiting the NF-κB mediated stimulation of the inflammatory cascade. CONCLUSION based on current findings, we propose that celecoxib as a drug candidate in combination with temozolomide might dampen the transcriptional and enzymatic activities associated with the aggressiveness of GBM and reduce the expression of GBM-associated NF-κB p65 (RelA) and TNFα inflammatory genes expression.
Collapse
Affiliation(s)
- Hina Ahsan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan;
- Riphah Institute of Pharmaceutical Sciences Islamabad, Riphah International University, Islamabad 44000, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan;
| | - Fawad Ali Shah
- Swat College of Pharmaceutical Sciences, Swat 19200, Pakistan;
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan;
- Institute of Pathology, University Hospital of Cologne, 50923 Cologne, Germany
| | - Zafar Abbas Shah
- Department of Bioinformatics, Hazara University, Mansehra 21120, Pakistan
| |
Collapse
|
4
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
5
|
Su YY, Liu YL, Huang HC, Lin CC. Ensemble learning model for identifying the hallmark genes of NFκB/TNF signaling pathway in cancers. J Transl Med 2023; 21:485. [PMID: 37475016 PMCID: PMC10357720 DOI: 10.1186/s12967-023-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ling Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
7
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Abdelrahman RS, Abdelsalam RA, Zaghloul MS. Beneficial effect of trimetazidine on folic acid-induced acute kidney injury in mice: Role of HIF-1α/HO-1. J Biochem Mol Toxicol 2022; 36:e23011. [PMID: 35191561 DOI: 10.1002/jbt.23011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
Acute kidney injury (AKI) is a complex syndrome associated with a decrease in renal function and a significant impact on patient outcomes. Injection of folic acid (FA) in mice is used for studying the pathogenesis of AKI. This study investigated the impact of trimetazidine (a metabolic modulator-antianginal drug; TMZ), against FA-induced AKI. AKI was induced by FA (250 mg/kg, ip) in mice. Two doses of TMZ were administered orally for 10 days. Administration of TMZ at a high dose (20 mg/kg) exhibited significant decreases in the renal somatic index (RSI), serum levels of lactate dehydrogenase (LDH), creatinine (Cr), blood urea nitrogen (1), and proteins level in urine. Moreover, TMZ significantly increased creatinine clearance (CCr), serum albumin, urine creatinine, and urine urea levels. This improvement in markers of kidney damage was associated with marked renal antioxidant effects (↓NO and ↓lipid peroxidation, normalized reduced glutathione (GSH) level and superoxide dismutase (SOD) activity, and increased HIF-1α/HO-1 level). Furthermore, TMZ significantly decreased FA-induced expression of MPO and inflammatory cytokine IL-18, TNF-α, and NF-κB p65 subunit. Renal apoptosis, along with apoptotic markers, were enhanced by FA injection and suppressed by TMZ administration (↓Caspase-3, ↓Bax, and ↑Bcl2 expression). Finally, TMZ amended FA-induced histopathological changes in kidneys. By mitigating functional alteration, oxidative stress, and preventing the development of inflammatory and apoptosis signals, TMZ provides dose-dependent defense against FA-induced AKI mainly via stimulation of hypoxia-inducible factor-1 alpha (HIF-1α)/heme oxygenase-1 (HO-1) pathway.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ramy A Abdelsalam
- Department of Pathology, Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Xiao Y, Li F, Zheng A, Chen Q, Chen F, Cheng X, Tao Z. Ginkgolic Acid Suppresses Nasopharyngeal Carcinoma Growth by Inducing Apoptosis and Inhibiting AKT/NF-κB Signaling. J Med Food 2021; 24:806-816. [PMID: 34382859 DOI: 10.1089/jmf.2021.k.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Even though nasopharyngeal carcinoma (NPC) is not common worldwide, it is a major public health burden in endemic areas. Distant metastasis often leads to a poor prognosis for NPC; therefore, new and effective anticancer strategies are needed. Ginkgolic acid (GA) is small-molecule compound existing in Ginkgo biloba that has various biologically relevant activities, including antitumor properties; however, its effects and mechanism of action in NPC are unknown. The effects of GA on NPC and such underlying mechanisms were investigated using 5-8F and CNE2 cells and NP69 human immortalized nasopharyngeal epithelial cells in this study. Moreover, the xenograft models were built to examine GA's effection in vivo. GA treatment decreased the survival and invasive capacity of 5-8F and CNE2 and induced their apoptosis, which varied with dose; this was accompanied by downregulation of B cell lymphoma (Bcl)2, upregulation of Bcl2-associated X protein, and activation of poly-ADP ribose polymerase, and caspase-9/-3. G0/G1 phase arrest was induced by GA in NPCs. It also reduced the expression of cyclin-dependent kinase 6 and its regulators cyclin D2 and cyclin D3. GA inhibited the activation of protein kinase B/nuclear factor signaling; this effect was potentiated with GA and 5-fluorouracil (5-FU), which also enhanced 5-FU-induced apoptosis. In summary, GA may be effective as an adjuvant to conventional chemotherapy drugs in preventing the progression of NPC.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fen Li
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyuan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuhai Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wang L, Guo J, Zhou J, Wang D, Kang X, Zhou L. NF-κB maintains the stemness of colon cancer cells by downregulating miR-195-5p/497-5p and upregulating MCM2. J Exp Clin Cancer Res 2020; 39:225. [PMID: 33109220 PMCID: PMC7592593 DOI: 10.1186/s13046-020-01704-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colon cancer represents one of the leading causes of gastrointestinal tumors in industrialized countries, and its incidence appears to be increasing at an alarming rate. Accumulating evidence has unveiled the contributory roles of cancer stem cells (CSCs) in tumorigenicity, recurrence, and metastases. The functions of NF-kappa B (NF-κB) activation on cancer cell survival, including colon cancer cells have encouraged us to study the role of NF-κB in the maintenance of CSCs in colon cancer. METHODS Tumor samples and matched normal samples were obtained from 35 colon cancer cases. CSCs were isolated from human colon cancer cell lines, where the stemness of the cells was evaluated by cell viability, colony-forming, spheroid-forming, invasion, migration, and apoptosis assays. NF-κB activation was then performed in subcutaneous tumor models of CSCs by injecting lipopolysaccharides (LPS) i.p. RESULTS We found that NF-κB activation could reduce the expression of miR-195-5p and miR-497-5p, where these two miRNAs were determined to be downregulated in colon cancer tissues, cultured colon CSCs, and LPS-injected subcutaneous tumor models. Elevation of miR-195-5p and miR-497-5p levels by their specific mimic could ablate the effects of NF-κB on the stemness of colon cancer cells in vivo and in vitro, suggesting that NF-κB could maintain the stemness of colon cancer cells by downregulating miR-195-5p/497-5p. MCM2 was validated as the target gene of miR-195-5p and miR-497-5p in cultured colon CSCs. Overexpression of MCM2 was shown to restore the stemness of colon cancer cells in the presence of miR-195-5p and miR-497-5p, suggesting that miR-195-5p and miR-497-5p could impair the stemness of colon cancer cells by targeting MCM2 in vivo and in vitro. CONCLUSIONS Our work demonstrates that the restoration of miR-195-5p and miR-497-5p may be a therapeutic strategy for colon cancer treatment in relation to NF-κB activation.
Collapse
Affiliation(s)
- Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jinxiang Guo
- Department of Respiratory Medicine, Taian Municipal Hospital, Taian, 271000, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of QingdaoUniversity Medical, Yantai, 264000, China
| | - Dongyang Wang
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiuwen Kang
- Department of Intensive Care Unit, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Lei Zhou
- Department of Oncological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
11
|
Schoeman R, Beukes N, Frost C. Cannabinoid Combination Induces Cytoplasmic Vacuolation in MCF-7 Breast Cancer Cells. Molecules 2020; 25:molecules25204682. [PMID: 33066359 PMCID: PMC7587381 DOI: 10.3390/molecules25204682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the synergistic anti-cancer potential of cannabinoid combinations across the MDA-MB-231 and MCF-7 human breast cancer cell lines. Cannabinoids were combined and their synergistic interactions were evaluated using median effect analysis. The most promising cannabinoid combination (C6) consisted of tetrahydrocannabinol, cannabigerol (CBG), cannabinol (CBN), and cannabidiol (CBD), and displayed favorable dose reduction indices and limited cytotoxicity against the non-cancerous breast cell line, MCF-10A. C6 exerted its effects in the MCF-7 cell line by inducing cell cycle arrest in the G2 phase, followed by the induction of apoptosis. Morphological observations indicated the induction of cytoplasmic vacuolation, with further investigation suggesting that the vacuole membrane was derived from the endoplasmic reticulum. In addition, lipid accumulation, increased lysosome size, and significant increases in the endoplasmic reticulum chaperone protein glucose-regulated protein 78 (GRP78) expression were also observed. The selectivity and ability of cannabinoids to halt cancer cell proliferation via pathways resembling apoptosis, autophagy, and paraptosis shows promise for cannabinoid use in standardized breast cancer treatment.
Collapse
|
12
|
Buhrmann C, Shayan P, Banik K, Kunnumakkara AB, Kubatka P, Koklesova L, Shakibaei M. Targeting NF-κB Signaling by Calebin A, a Compound of Turmeric, in Multicellular Tumor Microenvironment: Potential Role of Apoptosis Induction in CRC Cells. Biomedicines 2020; 8:biomedicines8080236. [PMID: 32708030 PMCID: PMC7460490 DOI: 10.3390/biomedicines8080236] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing lines of evidence suggest that chronic inflammation mediates most chronic diseases, including cancer. The transcription factor, NF-κB, has been shown to be a major regulator of inflammation and metastasis in tumor cells. Therefore, compounds or any natural agents that can inhibit NF-κB activation have the potential to prevent and treat cancer. However, the mechanism by which Calebin A, a component of turmeric, regulates inflammation and disrupts the interaction between HCT116 colorectal cancer (CRC) cells and multicellular tumor microenvironment (TME) is still poorly understood. The 3D-alginate HCT116 cell cultures in TME were treated with Calebin A, BMS-345541, and dithiothreitol (DTT) and examined for invasiveness, proliferation, and apoptosis. The mechanism of TME-induced malignancy of cancer cells was confirmed by phase contrast, Western blotting, immunofluorescence, and DNA-binding assay. We found through DNA binding assay, that Calebin A inhibited TME-induced NF-κB activation in a dose-dependent manner. As a result of this inhibition, NF-κB phosphorylation and NF-κB nuclear translocation were down-modulated. Calebin A, or IκB-kinase (IKK) inhibitor (BMS-345541) significantly inhibited the direct interaction of nuclear p65 to DNA, and interestingly this interaction was reversed by DTT. Calebin A also suppressed the expression of NF-κB-promoted anti-apoptotic (Bcl-2, Bcl-xL, survivin), proliferation (Cyclin D1), invasion (MMP-9), metastasis (CXCR4), and down-regulated apoptosis (Caspase-3) gene biomarkers, leading to apoptosis in HCT116 cells. These results suggest that Calebin A can suppress multicellular TME-promoted CRC cell invasion and malignancy by inhibiting the NF-κB-promoting inflammatory pathway associated with carcinogenesis, underlining the potential of Calebin A for CRC treatment.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Parviz Shayan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran 141556453, Iran;
| | - Kishore Banik
- Cancer Biology Laboratory & DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (K.B.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory & DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; (K.B.); (A.B.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-72624; Fax: +49-89-2180-72625
| |
Collapse
|
13
|
Latexin deficiency in mice up-regulates inflammation and aggravates colitis through HECTD1/Rps3/NF-κB pathway. Sci Rep 2020; 10:9868. [PMID: 32555320 PMCID: PMC7299958 DOI: 10.1038/s41598-020-66789-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
The function of Latexin (LXN) in inflammation has attracted attention. However, no data are available regarding its role in colitis. We report that LXN is a suppressor of colitis. LXN deficiency leads to the severity of colitis in DSS-induced mice, and LXN is required for the therapeutic effect of retinoic acid on colitis. Using a proteomics approach, we demonstrate that LXN interacts and forms a functional complex with HECTD1 (an E3 ubiquitin ligase) and ribosomal protein subunit3 (Rps3). IκBα is one of the substrates of HECTD1. Ectopic expression of LXN leads to IκBα accumulation in intestinal epithelial cells, however, LXN knockdown enhances the interaction of HECTD1 and Rps3, contributing to the ubiquitination degradation of IκBα, and subsequently enhances inflammatory response. Thus, our findings provided a novel mechanism underlying LXN modulates colitis via HECTD1/Rps3/NF-κB pathway and significant implications for the development of novel strategies for the treatment of colitis by targeting LXN.
Collapse
|
14
|
Calebin A Potentiates the Effect of 5-FU and TNF-β (Lymphotoxin α) against Human Colorectal Cancer Cells: Potential Role of NF-κB. Int J Mol Sci 2020; 21:ijms21072393. [PMID: 32244288 PMCID: PMC7177530 DOI: 10.3390/ijms21072393] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: The majority of chemotherapeutic agents stimulate NF-κB signaling that mediates cell survival, proliferation and metastasis. The natural turmeric non-curcuminoid derivate Calebin A has been shown to suppress cell growth, invasion and colony formation in colorectal cancer cells (CRC) by suppression of NF-κB signaling. Therefore, we hypothesized here that Calebin A might chemosensitize the TNF-β-treated tumor cells and potentiates the effect of 5-Fluorouracil (5-FU) in advanced CRC. Materials and Methods: CRC cells (HCT116) and their clonogenic 5-FU chemoresistant counterparts (HCT116R) were cultured in monolayer or alginate-based 3D tumor environment culture and were treated with/without Calebin A, TNF-β, 5-FU, BMS-345541 and DTT (dithiothreitol). Results: The results showed that TNF-β increased proliferation, invasion and resistance to apoptosis in chemoresistant CRC cells. Pretreatment with Calebin A significantly chemosensitized HCT116R to 5-FU and inhibited the TNF-β-induced enhanced efforts for survival, invasion and anti-apoptotic effects. We found further that Calebin A significantly suppressed TNF-β-induced phosphorylation and nuclear translocation of p65-NF-κB, similar to BMS-345541 (specific IKK inhibitor) and NF-κB-induced tumor-promoting biomarkers (NF-κB, β1-Integrin, MMP-9, CXCR4, Ki67). This was associated with increased apoptosis in HCT116 and HCT116R cells. Furthermore, blocking of p65-NF-κB stimulation by Calebin A was imparted through the downmodulation of p65-NF-κB binding to the DNA and this suppression was turned by DTT. Conclusion: Our findings indicate, for the first time, that Calebin A chemosensitizes human CRC cells to chemotherapy by targeting of the p65-NF-κB signaling pathway.
Collapse
|
15
|
Huang HC, Cai BH, Suen CS, Lee HY, Hwang MJ, Liu FT, Kannagi R. BGN/TLR4/NF-B Mediates Epigenetic Silencing of Immunosuppressive Siglec Ligands in Colon Cancer Cells. Cells 2020; 9:cells9020397. [PMID: 32050430 PMCID: PMC7072454 DOI: 10.3390/cells9020397] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
Human Toll-like receptor (TLR) signaling plays a vital role in intestinal inflammation by activating the NF-κB pathway. By querying GENT2 datasets, we identified the gene expression level of TLR2 and TLR4 as being substantially increased in colorectal cancer. Introduction of shRNAs for TLR4 but not TLR2 dramatically recovered disialyl Lewisa and sialyl 6-sulfo Lewisx glycans, which are preferentially expressed in non-malignant colonic epithelial cells and could serve as ligands for the immunosuppressive molecule Siglec-7. We screened several TLR4 ligands and found that among them BGN is highly expressed in cancers and is involved in the epigenetic silencing of Siglec-7 ligands. Suppression of BGN expression substantially downregulated NF-κB activity and the marker H3K27me3 in the promoter regions of the SLC26A2 and ST6GalNAc6 genes, which are involved in the synthesis of those glycans, and restored expression of normal glycans as well as Siglec-7 binding activities. We show that in the presence of TLR4, inflammatory stimuli initiate a positive loop involving NF-κB that activates BGN and further enhances TLR4 activity. Present findings indicate a putative mechanism for the promotion of carcinogenesis by loss of immunosuppressive ligands by the BGN/TLR4/ NF-κB pathway.
Collapse
Affiliation(s)
- Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
| | - Bi-He Cai
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
- Department of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
| | - Hsueh-Yi Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (B.-H.C.); (C.-S.S.); (H.-Y.L.); (M.-J.H.); (F.-T.L.)
- Correspondence: ; Tel.: +886-2-26523971
| |
Collapse
|
16
|
Evidence That Calebin A, a Component of Curcuma Longa Suppresses NF-B Mediated Proliferation, Invasion and Metastasis of Human Colorectal Cancer Induced by TNF-β (Lymphotoxin). Nutrients 2019; 11:nu11122904. [PMID: 31805741 PMCID: PMC6950382 DOI: 10.3390/nu11122904] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Natural polyphenol Calebin A has been recently discovered as a novel derivate from turmeric with anti-cancer potential. Pro-inflammatory cytokine TNF-β (lymphotoxin α) is a stimulant for cancer cell malignity via activation of NF-κB pathway, also in colorectal cancer (CRC). Here, we investigated the potential of Calebin A to suppress TNF-β-induced NF-κB signalling in CRC. Materials and Methods: Three distinct CRC cell lines (HCT116, RKO, SW480) were treated in monolayer or 3-dimensional alginate culture with TNF-β, Calebin A, curcumin, BMS-345541, dithiothreitol (DTT) or antisense oligonucleotides-(ASO) against NF-κB. Results: Calebin A suppressed dose-dependent TNF-β-induced CRC cell vitality and proliferation in monolayer culture. Further, in alginate culture, Calebin A significantly suppressed TNF-β-enhanced colonosphere development, as well as invasion and colony formation of all three CRC cell lines investigated. Calebin A specifically blocked TNF-β-induced activation and nuclear translocation of p65-NF-κB, similar to curcumin (natural NF-κB inhibitor), BMS-345541 (specific IKK inhibitor) and ASO-NF-κB. Moreover, Immunofluorescence and Immunoblotting showed that Calebin A, similar to curcumin or BMS-345541 suppressed TNF-β-induced activation and nuclear translocation of p65-NF-κB and the transcription of NF-κB-promoted biomarkers associated with proliferation, migration and apoptosis, in a dose- and time-dependent manner. Those findings were potentiated by the specific treatment of extracted nuclei with DTT, which abrogated Calebin A-mediated nuclear p65-NF-κB-inhibition and restored p65-NF-κB-activity in the nucleus. Conclusion: Overall, these results demonstrate, for the first time, that multitargeted Calebin A has an anti-cancer capability on TNF-β-induced malignities through inhibitory targeting of NF-κB activation in the cytoplasm, as well as by suppressing the binding of p65-NF-κB to DNA.
Collapse
|
17
|
Xu Y, Wang Y, Pang X, Li Z, Wu J, Zhou Z, Xu T, Gobin Beharee R, Jin L, Yu J. Potassium dihydrogen phosphate promotes the proliferation and differentiation of human periodontal ligament stem cells via nuclear factor kappa B pathway. Exp Cell Res 2019; 384:111593. [PMID: 31487508 DOI: 10.1016/j.yexcr.2019.111593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissues. Potassium dihydrogen phosphate (KH2PO4) has recently been applied as a component of the mineralization inducing medium (MM), which can be used to induce osteogenic differentiation of dental stem cells. However, whether KH2PO4 has effects on PDLSCs has not been studied. MATERIALS AND METHODS PDLSCs were isolated by magnetic activated cell sorting and cultured. Alkaline phosphatase (ALP) activity and ALP protein expression of PDLSCs treated with different concentrations of KH2PO4 were examined to make sure the optimal concentration of KH2PO4 for the following experiments. The effects of KH2PO4 on the proliferation and differentiation of PDLSCs were investigated by flow cytometry, cell counting kit-8 assay, alizarin red staining, real-time RT-PCR, and Western blot. The involvement of nuclear factor kappa B (NF-κB) pathway in KH2PO4-treated PDLSCs was analyzed by Western blot and alizarin red staining. RESULTS ALP activity assay and ALP protein expression examination revealed that 1.8 mmol/L KH2PO4 was the optimal concentration for the induction of hPDLSCs by KH2PO4. The proliferation and mineralization capacity of PDLSCs treated with KH2PO4 were enhanced as compared with the control group. PDLSCs treated with KH2PO4 showed an improved proliferation capacity in logarithmic growth phase at day 7. As PDLSCs were treated with KH2PO4, the expression of odonto/osteogenic markers (OCN/OCN, DSP/DSPP, OSX/OSX, RUNX2/RUNX2, and ALP/ALP) in cells were up-regulated at day 3 or 7. Moreover, the expression of IκBα in cytoplasm was down-regulated, along with an increased expression of p-P65 in cytoplasm and an up-regulated expression of P65 in nucleus. When treated with BMS345541 (the specific NF-κB inhibitor), the odonto/osteogenic differentiation of KH2PO4-treated PDLSCs was significantly attenuated. CONCLUSION KH2PO4 can improve the proliferation and odonto/osteogenic differentiation capacity of PDLSCs via NF-κB pathway, and thus represents a potential target involved in the regeneration of periodontium for clinical treatments.
Collapse
Affiliation(s)
- Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 61 Beizhi Street, Changzhou, Jiangsu 213000, China; Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Xiyao Pang
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Zhou Zhou
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Tao Xu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Romila Gobin Beharee
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Lin Jin
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Nantong Stomatological Hospital, 36 South Yuelong Road, Nantong, Jiangsu 226001, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Endodontic Department, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
18
|
Information Theory: New Look at Oncogenic Signaling Pathways. Trends Cell Biol 2019; 29:862-875. [DOI: 10.1016/j.tcb.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
|
19
|
Palmitic Acid and β-Hydroxybutyrate Induce Inflammatory Responses in Bovine Endometrial Cells by Activating Oxidative Stress-Mediated NF-κB Signaling. Molecules 2019; 24:molecules24132421. [PMID: 31266188 PMCID: PMC6650895 DOI: 10.3390/molecules24132421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Ketosis is a nutritional metabolic disease in dairy cows, and researches indicated that ketonic cows always accompany reproductive problems. When ketosis occurs, the levels of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA) in the blood increase significantly. Palmitic acid (PA) is a main component of saturated fatty acids composing NEFA. The aim of this study was to investigate whether high levels of PA and BHBA induce inflammatory responses and regulatory mechanisms in bovine endometrial cells (BEND). Using an enzyme-linked immunosorbent assay, quantitative real-time PCR, and western blotting, we evaluated oxidative stress, pro-inflammatory factors, and the nuclear factor (NF)-κB pathway in cultured BEND cells treated with different concentrations of PA, BHBA, pyrrolidinedithiocarbamate (PDTC, an NF-κB pathway inhibitor), and N-acetylcysteine (NAC, an antioxidant). The content of malondialdehyde was significantly higher, the content of glutathione was lower, and antioxidant activity-glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity-was lower in treated cells compared with control cells. PA- and BHBA-induced oxidative stress activated the NF-κB signaling pathway and upregulated the release of pro-inflammatory factors. Moreover, PA- and BHBA-induced activation of NF-κB-mediated inflammatory responses was inhibited by PDTC and NAC. High concentrations of PA and BHBA induce inflammatory responses in BEND cells by activating oxidative stress-mediated NF-κB signaling.
Collapse
|
20
|
Abstract
A handful of core intercellular signaling pathways play pivotal roles in a broad variety of developmental processes. It has remained puzzling how so few pathways can provide the precision and specificity of cell-cell communication required for multicellular development. Solving this requires us to quantitatively understand how developmentally relevant signaling information is actively sensed, transformed and spatially distributed by signaling pathways. Recently, single cell analysis and cell-based reconstitution, among other approaches, have begun to reveal the 'communication codes' through which information is represented in the identities, concentrations, combinations and dynamics of extracellular ligands. They have also revealed how signaling pathways decipher these features and control the spatial distribution of signaling in multicellular contexts. Here, we review recent work reporting the discovery and analysis of communication codes and discuss their implications for diverse developmental processes.
Collapse
Affiliation(s)
- Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
22
|
Leu SJJ, Lee TY, Cheng SW, Tsai MY, Lin YS, Chiou TJ, Huang KY, Chiang AN. Structural and functional characterization of β 2 -glycoprotein I domain 1 in anti-melanoma cell migration. Cancer Sci 2019; 110:1974-1986. [PMID: 31012976 PMCID: PMC6549912 DOI: 10.1111/cas.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
We previously found that circulating β2‐glycoprotein I inhibits human endothelial cell migration, proliferation, and angiogenesis by diverse mechanisms. In the present study, we investigated the antitumor activities of β2‐glycoprotein I using structure‐function analysis and mapped the critical region within the β2‐glycoprotein I peptide sequence that mediates anticancer effects. We constructed recombinant cDNA and purified different β2‐glycoprotein I polypeptide domains using a baculovirus expression system. We found that purified β2‐glycoprotein I, as well as recombinant β2‐glycoprotein I full‐length (D12345), polypeptide domains I‐IV (D1234), and polypeptide domain I (D1) significantly inhibited melanoma cell migration, proliferation and invasion. Western blot analyses were used to determine the dysregulated expression of proteins essential for intracellular signaling pathways in B16‐F10 treated with β2‐glycoprotein I and variant recombinant polypeptides. Using a melanoma mouse model, we found that D1 polypeptide showed stronger potency in suppressing tumor growth. Structural analysis showed that fragments A and B within domain I would be the critical regions responsible for antitumor activity. Annexin A2 was identified as the counterpart molecule for β2‐glycoprotein I by immunofluorescence and coimmunoprecipitation assays. Interaction between specific amino acids of β2‐glycoprotein I D1 and annexin A2 was later evaluated by the molecular docking approach. Moreover, five amino acid residues were selected from fragments A and B for functional evaluation using site‐directed mutagenesis, and P11A, M42A, and I55P mutations were shown to disrupt the anti‐melanoma cell migration ability of β2‐glycoprotein I. This is the first study to show the therapeutic potential of β2‐glycoprotein I D1 in the treatment of melanoma progression.
Collapse
Affiliation(s)
- Shr-Jeng Jim Leu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, China
| | - Shu-Wei Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Meng-Ying Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Shan Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Tzeon-Jye Chiou
- Division of Transfusion Medicine, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, Chinese University of Hong Kong, Shenzhen, China
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Abstract
The global burden of chronic kidney disease will increase during the next century. As NFκB, first described more than 30 years ago, plays a major role in immune and non-immune-mediated diseases and in inflammatory and metabolic disorders, this review article summarizes current knowledge on the role of NFκB in in vivo kidney injury and describes the new and so far not completely understood crosstalk between canonical and non-canonical NFκB pathways in T-lymphocyte activation in renal disease.
Collapse
Affiliation(s)
- Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Zhou X, Shan Z, Yang H, Xu J, Li W, Guo F. RelB plays an oncogenic role and conveys chemo-resistance to DLD-1 colon cancer cells. Cancer Cell Int 2018; 18:181. [PMID: 30473630 PMCID: PMC6234565 DOI: 10.1186/s12935-018-0677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background Nuclear transcription factor kappa B (NF-κB) subunits exhibit crucial roles in tumorigenesis and chemo-sensitivity. Recent studies suggest that RelB, the key subunit of the alternative NF-κB pathway, plays a critical role in the progression of diverse human malignancies. However, the significance of RelB in colorectal cancer (CRC) remains unclear. Here, we systematically explored the functions of the alternative NF-κB subunit RelB in colon cancer cells and its underlying mechanism. Methods Stably transfected RelB-shRNA DLD-1 cells were established using Lipofectamine 2000. NF-κB DNA-binding capability was quantified using an ELISA-based NF-κB activity assay. Cell growth was monitored by an x-Celligence system. Cell proliferation was analyzed by a CCK-8 and a Brdu proliferation assay. Response to 5-FU was assessed by an x-Celligence system. Cell apoptosis and cell cycle was detected using flow cytometry analyses. Cell migration and invasion abilities were detected by an x-Celligence system, Transwell inserts, and wound-healing assays. RelB expression and its clinical significance were analyzed using the CRC tissue microarray. The expression of NF-κB signaling subunits, AKT/mTOR signaling molecules, cell cycle related proteins, MMP2, MMP9, and Integrin β-1 were measured by Western blotting analyses. Results The RelB-silencing inhibited cell growth of DLD-1 cells. The RelB-silencing exerted the anti-proliferative by downregulation of AKT/mTOR signaling. The RelB-silencing caused G0–G1 cell cycle arrested likely due to decreasing the expression of Cyclin D1 and CDK4, concomitant with increased expression of p27Kip1. The RelB-silencing enhanced cytotoxic effect of 5-FU and induced cell accumulation in S-phase. The RelB-silencing impaired the migration and invasion potential of DLD-1 cells, which was related to downregulation of MMP2, MMP9, and Integrin β-1. Importantly, the RelB expression was correlated with depth of tumor invasion, lymph node metastasis, metastasis stage, and pTNM stage. High-RelB expression was significantly correlated with poor overall survival in CRC patients. Conclusion Our studies here provided evidence that RelB plays an oncogenic role and conveys chemo-resistance to 5-FU. RelB can be considered as an independent indicator of prognosis in CRC.
Collapse
Affiliation(s)
- Xiaojun Zhou
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Zhili Shan
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hengying Yang
- 1Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jingjing Xu
- 2Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wenjing Li
- 3Department of Clinical Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215006 China
| | - Feng Guo
- 4Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|
25
|
The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. Int J Mol Sci 2018; 19:ijms19082220. [PMID: 30061500 PMCID: PMC6121395 DOI: 10.3390/ijms19082220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Astronauts are exposed to considerable doses of space radiation during long-term space missions. As complete shielding of the highly energetic particles is impracticable, the cellular response to space-relevant radiation qualities has to be understood in order to develop countermeasures and to reduce radiation risk uncertainties. The transcription factor Nuclear Factor κB (NF-κB) plays a fundamental role in the immune response and in the pathogenesis of many diseases. We have previously shown that heavy ions with a linear energy transfer (LET) of 100–300 keV/µm have a nine times higher potential to activate NF-κB compared to low-LET X-rays. Here, chemical inhibitor studies using human embryonic kidney cells (HEK) showed that the DNA damage sensor Ataxia telangiectasia mutated (ATM) and the proteasome were essential for NF-κB activation in response to X-rays and heavy ions. NF-κB’s role in cellular radiation response was determined by stable knock-down of the NF-κB subunit RelA. Transfection of a RelA short-hairpin RNA plasmid resulted in higher sensitivity towards X-rays, but not towards heavy ions. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) showed that after exposure to X-rays and heavy ions, NF-κB predominantly upregulates genes involved in intercellular communication processes. This process is strictly NF-κB dependent as the response is completely absent in RelA knock-down cells. NF-κB’s role in the cellular radiation response depends on the radiation quality.
Collapse
|
26
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|