1
|
Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, Ma Z, Ho PCL, Sethi G, Chen X, Wang L, Goh BC. Extracellular vesicle-derived biomarkers in prostate cancer care: Opportunities and challenges. Cancer Lett 2024; 601:217184. [PMID: 39142499 DOI: 10.1016/j.canlet.2024.217184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou, 434000, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
2
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Erwied P, Gu Y, Simon L, Schneider M, Helm D, Michel MS, Nuhn P, Nitschke K, Worst TS. Optimized workflow of EV enrichment from human plasma samples for downstream mass spectrometry analysis. Discov Oncol 2024; 15:374. [PMID: 39190201 DOI: 10.1007/s12672-024-01248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
To improve the prognosis of bladder and prostate cancer, highly specific and sensitive biomarkers are needed for early detection, prognosis prediction, and therapeutic stratification. Extracellular vesicles (EV) from plasma could fill this gap due to their potential to serve as cancer biomarkers. However, the enrichment of EV is a major challenge, because the highly abundant plasma proteins are interfering with analytical downstream applications like mass spectrometry (MS). Therefore, the purity requirements of the EV samples must be carefully considered when selecting or developing a suitable EV enrichment method. The aim of this study was to compare a self-designed EV enrichment method based on density cushion centrifugation (DCC) combined with size exclusion chromatography (SEC) and concentration (method 1) with the exoRNeasy midi kit from Qiagen (method 2) and with unprocessed plasma. Furthermore, the single steps of method 1 were evaluated for their effectiveness to enrich EV from plasma. The results showed that the EV samples enriched with method 1 contained the highest levels of EV and exosome markers with simultaneously low levels of highly abundant plasma proteins. In summary, the combination of DCC, SEC and concentration proved to be a promising approach to discover EV-based biomarkers from plasma of cancer patients.
Collapse
Affiliation(s)
- Patrick Erwied
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Yi Gu
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Lena Simon
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maurice Stefan Michel
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Philipp Nuhn
- Department of Urology, Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Katja Nitschke
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Thomas Stefan Worst
- Department of Urology and Urosurgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
4
|
Liao C, Huang Z, Liu J, Deng M, Wang L, Chen Y, Li J, Zhao J, Luo X, Zhu J, Wu Q, Fu W, Sun B, Zheng J. Role of extracellular vesicles in castration-resistant prostate cancer. Crit Rev Oncol Hematol 2024; 197:104348. [PMID: 38588967 DOI: 10.1016/j.critrevonc.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.
Collapse
Affiliation(s)
- Chaoyu Liao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingui Liu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Leyi Wang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yutong Chen
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Qingjian Wu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Weihua Fu
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
5
|
Crucitta S, Cucchiara F, Marconcini R, Bulleri A, Manacorda S, Capuano A, Cioni D, Nuzzo A, de Jonge E, Mathjissen RHJ, Neri E, van Schaik RHN, Fogli S, Danesi R, Del Re M. TGF-β mRNA levels in circulating extracellular vesicles are associated with response to anti-PD1 treatment in metastatic melanoma. Front Mol Biosci 2024; 11:1288677. [PMID: 38633217 PMCID: PMC11021649 DOI: 10.3389/fmolb.2024.1288677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/27/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: Immune checkpoint inhibitors (ICIs) represent the standard therapy for metastatic melanoma. However, a few patients do not respond to ICIs and reliable predictive biomarkers are needed. Methods: This pilot study investigates the association between mRNA levels of programmed cell death-1 (PD-1) ligand 1 (PD-L1), interferon-gamma (IFN-γ), and transforming growth factor-β (TGF-β) in circulating extracellular vesicles (EVs) and survival in 30 patients with metastatic melanoma treated with first line anti-PD-1 antibodies. Blood samples were collected at baseline and RNA extracted from EVs; the RNA levels of PD-L1, IFN-γ, and TGF-β were analysed by digital droplet PCR (ddPCR). A biomarker-radiomic correlation analysis was performed in a subset of patients. Results: Patients with high TGF-β expression (cut-off fractional abundance [FA] >0.19) at baseline had longer median progression-free survival (8.4 vs. 1.8 months; p = 0.006) and overall survival (17.9 vs. 2.63 months; p = 0.0009). Moreover, radiomic analysis demonstrated that patients with high TGF-β expression at baseline had smaller lesions (2.41 ± 3.27 mL vs. 42.79 ± 101.08 mL, p < 0.001) and higher dissimilarity (12.01 ± 28.23 vs. 5.65 ± 8.4; p = 0.018). Discussion: These results provide evidence that high TGF-β expression in EVs is associated with a better response to immunotherapy. Further investigation on a larger patient population is needed to validate the predictive power of this potential biomarker of response to ICIs.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Marconcini
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Alessandra Bulleri
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simona Manacorda
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Dania Cioni
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Department of Medicine and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Evert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ron H. J. Mathjissen
- Department of Medical Oncology, Erasmus University Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Emanuele Neri
- Unit of Radiodiagnostics 1, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Chen H, Pang B, Zhou C, Han M, Gong J, Li Y, Jiang J. Prostate cancer-derived small extracellular vesicle proteins: the hope in diagnosis, prognosis, and therapeutics. J Nanobiotechnology 2023; 21:480. [PMID: 38093355 PMCID: PMC10720096 DOI: 10.1186/s12951-023-02219-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Current diagnostic tools for prostate cancer (PCa) diagnosis and risk stratification are insufficient. The hidden onset and poor efficacy of traditional therapies against metastatic PCa make this disease a heavy burden in global men's health. Prostate cancer-derived extracellular vesicles (PCDEVs) have garnered attention in recent years due to their important role in communications in tumor microenvironment. Recent advancements have demonstrated PCDEVs proteins play an important role in PCa invasion, progression, metastasis, therapeutic resistance, and immune escape. In this review, we briefly discuss the applications of sEV proteins in PCa diagnosis and prognosis in liquid biopsy, focus on the roles of the PCa-derived small EVs (sEVs) proteins in tumor microenvironment associated with cancer progression, and explore the therapeutic potential of sEV proteins applied for future metastatic PCa therapy.
Collapse
Affiliation(s)
- Haotian Chen
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Bairen Pang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Cheng Zhou
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Meng Han
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Jie Gong
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, 2217, Australia.
- School of Clinical Medicine, St. George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Junhui Jiang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, People's Republic of China.
- Department of Urology, Ningbo First Hospital, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, 315600, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Sisodiya S, Kasherwal V, Khan A, Roy B, Goel A, Kumar S, Arif N, Tanwar P, Hussain S. Liquid Biopsies: Emerging role and clinical applications in solid tumours. Transl Oncol 2023; 35:101716. [PMID: 37327582 PMCID: PMC10285278 DOI: 10.1016/j.tranon.2023.101716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Late detection and lack of precision diagnostics are the major challenges in cancer prevention and management. Biomarker discovery in specific cancers, especially at the pre-invasive stage, is vital for early diagnosis, positive treatment response, and good disease prognosis. Traditional diagnostic measures require invasive procedures such as tissue excision using a needle, an endoscope, and/or surgical resection which can be unsafe, expensive, and painful. Additionally, the presence of comorbid conditions in individuals might render them ineligible for undertaking a tissue biopsy, and in some cases, it is difficult to access tumours depending on the site of occurrence. In this context, liquid biopsies are being explored for their clinical significance in solid malignancies management. These non-invasive or minimally invasive methods are being developed primarily for identification of biomarkers for early diagnosis and targeted therapeutics. In this review, we have summarised the use and importance of liquid biopsy as significant tool in diagnosis, prognosis prediction, and therapeutic development. We have also discussed the challenges that are encountered and future perspective.
Collapse
Affiliation(s)
- Sandeep Sisodiya
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Vishakha Kasherwal
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kumar
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Nazneen Arif
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Cellular and Molecular Diagnostics (Molecular Biology Group), ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
8
|
Zabegina L, Zyatchin I, Kniazeva M, Shalaev A, Berkut M, Sharoyko V, Mikhailovskii V, Kondratov K, Reva S, Nosov A, Malek A. Diagnosis of Prostate Cancer through the Multi-Ligand Binding of Prostate-Derived Extracellular Vesicles and miRNA Analysis. Life (Basel) 2023; 13:life13040885. [PMID: 37109414 PMCID: PMC10141197 DOI: 10.3390/life13040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The development of new non-invasive markers for prostate cancer (PC) diagnosis, prognosis, and management is an important issue that needs to be addressed to decrease PC mortality. Small extracellular vesicles (SEVs) secreted by prostate gland or prostate cancer cells into the plasma are considered next-generation diagnostic tools because their chemical composition might reflect the PC development. The population of plasma vesicles is extremely heterogeneous. The study aimed to explore a new approach for prostate-derived SEV isolation followed by vesicular miRNA analysis. Methods: We used superparamagnetic particles functionalized by five types of DNA-aptamers binding the surface markers of prostate cells. Specificity of binding was assayed by AuNP-aptasensor. Prostate-derived SEVs were isolated from the plasma of 36 PC patients and 18 healthy donors and used for the assessment of twelve PC-associated miRNAs. The amplification ratio (amp-ratio) value was obtained for all pairs of miRNAs, and the diagnostic significance of these parameters was evaluated. Results: The multi-ligand binding approach doubled the efficiency of prostate-derived SEVs’ isolation and made it possible to purify a sufficient amount of vesicular RNA. The neighbor clusterization, using three pairs of microRNAs (miR-205/miR-375, miR-26b/miR375, and miR-20a/miR-375), allowed us to distinguish PC patients and donors with sensitivity—94%, specificity—76%, and accuracy—87%. Moreover, the amp-ratios of other miRNAs pairs reflected such parameters as plasma PSA level, prostate volume, and Gleason score of PC. Conclusions: Multi-ligand isolation of prostate-derived vesicles followed by vesicular miRNA analysis is a promising method for PC diagnosis and monitoring.
Collapse
Affiliation(s)
- Lidia Zabegina
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Ilya Zyatchin
- Department of Oncology No. 6, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
| | - Margarita Kniazeva
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Andrey Shalaev
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Maria Berkut
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Vladimir Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
| | - Vladimir Mikhailovskii
- Interdisciplinary Resource Center for Nanotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Kirill Kondratov
- Translational Medicine Laboratory, City Hospital No. 40, 197706 Saint-Petersburg, Russia
| | - Sergey Reva
- Department of Oncology No. 6, Pavlov First Medical State University, 197022 Saint-Petersburg, Russia
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Alexandr Nosov
- Surgical Department of Oncourology, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
| | - Anastasia Malek
- Subcellular Technology Lab, Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia
- Oncosystem Ltd., 121205 Moscow, Russia
- Correspondence: ; Tel.: +7-960-250-46-80
| |
Collapse
|
9
|
Robinson H, Roberts MJ, Gardiner RA, Hill MM. Extracellular vesicles for precision medicine in prostate cancer - Is it ready for clinical translation? Semin Cancer Biol 2023; 89:18-29. [PMID: 36681206 DOI: 10.1016/j.semcancer.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.
Collapse
Affiliation(s)
- Harley Robinson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia.
| | - Matthew J Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert A Gardiner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Ulivi P, Indraccolo S. Liquid Biopsies in Cancer Diagnosis, Monitoring and Prognosis. Biomedicines 2022; 10:2748. [PMID: 36359268 PMCID: PMC9687655 DOI: 10.3390/biomedicines10112748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 12/18/2023] Open
Abstract
Liquid biopsy has emerged as new tool for detecting clinically relevant genetic alterations in cancer patients [...].
Collapse
Affiliation(s)
- Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| |
Collapse
|
11
|
Feasibility of Leukemia-Derived Exosome Enrichment and Co-isolated dsDNA Sequencing in Acute Myeloid Leukemia Patients: A Proof of Concept for New Leukemia Biomarkers Detection. Cancers (Basel) 2022; 14:cancers14184504. [PMID: 36139664 PMCID: PMC9497185 DOI: 10.3390/cancers14184504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The present pilot study aimed at investigating the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA target re-sequencing for adult Acute Myeloid Leukemias (AML) marker detection. To our knowledge, this is the first time that a proof-of-concept combining a leukemia-derived exosome enrichment strategy based on a commercial CE-IVD kit and next-generation sequencing was applied in a cohort of adult AML patients. The reported approach is easy, quick and user friendly and gives the possibility of obtaining a good quantity of exosomal dsDNA (composed of exosomal cargo and surrounding DNA) suitable for further analysis. The time-effective procedure opens up future effective clinical applications. This pilot study presents the potential of a proof-of-concept based on exosome analysis to be applied in clinical practice, as well as the feasibility of this kind of investigations using a certified kit, avoiding many additional analyses. It may encourage further studies regarding extracellular vesicles in myeloid neoplasia. Abstract Exosomes are extracellular vesicles playing a pivotal role in the intercellular communication. They shuttle different cargoes, including nucleic acids from their cell of origin. For this reason, they have been studied as carriers of tumor markers in different liquid biopsy approaches, in particular for solid tumors. Few data are available concerning exosomes as markers of myeloid neoplasia. To better understand their real potential and the best approach to investigate leukemic exosomes, we present the results of a pilot feasibility study evaluating the application of next-generation sequencing analysis of dsDNA derived from exosomes isolated in 14 adult patients affected by acute myeloid leukemias. In particular, leukemia-derived exosome fractions have been analyzed. The concentration of dsDNA co-extracted with exosomes and the number and types of mutations detected were considered and compared with ones identified in the Bone Marrow (BM) and Peripheral Blood (PB) cells. Exosomal DNA concentration, both considering the cargo and the DNA surrounding the lipid membrane resulted in a linear correlation with leukemic burden. Moreover, exosomal DNA mutation status presented 86.5% of homology with BM and 75% with PB. The results of this pilot study confirmed the feasibility of a leukemia-derived exosome enrichment approach followed by exosomal dsDNA NGS analysis for AML biomarker detection. These data point to the use of liquid biopsy in myeloid neoplasia for the detection of active leukemic cells resident in the BM via a painless procedure.
Collapse
|
12
|
Chen X, Yu L, Hao K, Yin X, Tu M, Cai L, Zhang L, Pan X, Gao Q, Huang Y. Fucosylated exosomal miRNAs as promising biomarkers for the diagnosis of early lung adenocarcinoma. Front Oncol 2022; 12:935184. [PMID: 36033494 PMCID: PMC9414872 DOI: 10.3389/fonc.2022.935184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Considering the absence of apparent symptoms at the early stage, most patients with lung adenocarcinoma (LUAD) present at an advanced stage, leading to a dismal 5-year survival rate of <20%. Thus, finding perspective non-invasive biomarkers for early LUAD is very essential. Methods We developed a fucose-captured strategy based on lentil lectin-magnetic beads to isolate fucosylated exosomes from serum. Then, a prospective study was conducted to define the diagnostic value of serum exosomal miRNAs for early LUAD. A total of 310 participants were enrolled, including 146 LUAD, 98 benign pulmonary nodules (BPNs), and 66 healthy controls (HCs). Firstly, exosome miRNAs in the discovery cohort (n = 24) were profiled by small RNA sequencing. Secondly, 12 differentially expressed miRNAs (DEmiRs) were selected for further screening in a screening cohort (n = 64) by qRT-PCR. Finally, four candidate miRNAs were selected for further validation in a validating cohort (n = 222). Results This study demonstrated the feasibility of a fucose-captured strategy for the isolation of fucosylated exosomes from serum, evidenced with exosomal characteristics identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting, as well as rapid and convenient operation of <10 min. Furthermore, a miRNA panel for early LUAD composed of miR4732-5p, miR451a, miR486-5p, and miR139-3p was defined with an AUC of 0.8554 at 91.07% sensitivity and 66.36% specificity. Conclusions The fucose-captured strategy provides a reliable, as well as rapid and convenient, approach for the isolation of tumor-derived exosomes from serum. A four-fucosylated exosomal miRNA panel presents good performance for early LUAD diagnosis.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, China
| | - Lili Yu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Kun Hao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
| | - Xiaoqing Yin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liqing Cai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liangming Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Qi Gao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
- *Correspondence: Yi Huang, ; Qi Gao,
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Yi Huang, ; Qi Gao,
| |
Collapse
|
13
|
Feng ZY, Zhang QY, Tan J, Xie HQ. Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? SCIENCE CHINA. LIFE SCIENCES 2022; 65:1325-1341. [PMID: 34637101 PMCID: PMC8506103 DOI: 10.1007/s11427-021-1997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.
Collapse
Affiliation(s)
- Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Stratification of Oligometastatic Prostate Cancer Patients by Liquid Biopsy: Clinical Insights from a Pilot Study. Biomedicines 2022; 10:biomedicines10061321. [PMID: 35740343 PMCID: PMC9219949 DOI: 10.3390/biomedicines10061321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
We propose a pilot, prospective, translational study with the aim of identifying possible molecular markers underlying metastatic prostate cancer (PC) evolution with the use of liquid biopsy. Twenty-eight castrate sensitive, oligometastatic PC patients undergoing bone and/or nodal stereotactic body radiotherapy (SBRT) were recruited. Peripheral blood samples were collected before the commencement of SBRT, then they were processed for circulating cell free DNA (cfDNA) extraction. Deep targeted sequencing was performed using a custom gene panel. The primary endpoint was to identify differences in the molecular contribution between the oligometastatic and polymetastatic evolution of PC to same-first oligo-recurrent disease presentation. Seventy-seven mutations were detected in 25/28 cfDNA samples: ATM in 14 (50%) cases, BRCA2 11 (39%), BRCA1 6 (21%), AR 13 (46%), ETV4, and ETV6 2 (7%). SBRT failure was associated with an increased risk of harboring the BRCA1 mutation (OR 10.5) (p = 0.043). The median cfDNA concentration was 24.02 ng/mL for ATM mutation carriers vs. 40.04 ng/mL for non-carriers (p = 0.039). Real-time molecular characterization of oligometastatic PC may allow for the identification of a true oligometastatic phenotype, with a stable disease over a long time being more likely to benefit from local, curative treatments or the achievement of long-term disease control. A prospective validation of our promising findings is desirable for a better understanding of the real impact of liquid biopsy in detecting tumor aggressiveness and clonal evolution.
Collapse
|
16
|
Grimaldi AM, Salvatore M, Cavaliere C. Diagnostic and prognostic significance of extracellular vesicles in prostate cancer drug resistance: A systematic review of the literature. Prostate Cancer Prostatic Dis 2022:10.1038/s41391-022-00521-w. [PMID: 35264776 DOI: 10.1038/s41391-022-00521-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The clinical behavior of prostate cancer is highly heterogeneous, with most patients diagnosed with localized disease that successfully responds to surgery or radiotherapy. However, a fraction of men relapse after initial treatment because they develop drug resistance. The failure of anticancer drugs leaves resistant cancer cells to survive and proliferate, negatively affecting patient survival. Thus, drug resistance remains a significant obstacle to the effective treatment of prostate cancer patients. In this scenario, the involvement of extracellular vesicles (EVs) in intrinsic and acquired resistance have been reported in several tumors, and accumulating data suggests that their differential content can be used as diagnostic or prognostic factors. Thus, we propose a systematic study of literature to provide a snapshot of the current scenario regarding EVs as diagnostic and prognostic biomarkers resource in resistant prostate cancer. METHODS We performed the current systematic review according to PRISMA guidelines and comprehensively explored PubMed, EMBASE and Google Scholar databases to achieve the article search. RESULTS Thirty-three studies were included and investigated. Among all systematically reviewed EV biomarkers, we found mainly molecules with prognostic significance (61%), molecules with diagnostic relevance (18%), and molecules that serve both purposes (21%). Moreover, among all analyzed molecules isolated from EVs, proteins, mRNAs, and miRNAs emerged to be the most investigated and proposed as potential tools to diagnose or predict resistance/sensitivity to advanced PCa treatments. DISCUSSION Our analysis provides a snapshot of the current scenario regarding EVs as potential clinical biomarkers in resistant PCa. Nevertheless, despite many efforts, the use of EV biomarkers in PCa is currently at an early stage: none of the selected EV biomarkers goes beyond preclinical studies, and their translatability is yet far from clinical settings.
Collapse
|
17
|
Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev Oncol Hematol 2021; 169:103565. [PMID: 34871719 DOI: 10.1016/j.critrevonc.2021.103565] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death worldwide and cancer incidence and mortality are rapidly growing. These massive amounts of cancer patients require rapid diagnosis and efficient treatment strategies. However, the currently utilized methods are invasive and cost-effective. Recently, the effective roles of exosomes as promising diagnostic, prognostic, and predictive biomarkers have been revealed. Exosomes are membrane-bound extracellular vesicles containing RNAs, DNAs, and proteins, and are present in a wide array of body fluids. Exosomal cargos have shown the potential to detect various types of cancers at early stages with high sensitivity and specificity. They can also delivery therapeutic agents efficiently. In this article, an overview of recent advances in the research of exosomal biomarkers and their applications in cancer diagnosis and treatment has been provided. Furthermore, the advantages and challenges of exosomes as liquid biopsy targets are discussed and the clinical implications of using exosomal miRNAs have been revealed.
Collapse
|
18
|
Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, Migliaccio A, Castoria G. Communication between cells: exosomes as a delivery system in prostate cancer. Cell Commun Signal 2021; 19:110. [PMID: 34772427 PMCID: PMC8586841 DOI: 10.1186/s12964-021-00792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggressive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database ( https://pubmed.ncbi.nlm.nih.gov ) for the past 10 years, we have found more than four hundred papers. Among them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and progression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of PC patients are also presented. Video Abstract.
Collapse
Affiliation(s)
- Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Alessandra Monaco
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Fabrizio Licitra
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Bruno Perillo
- Istituto di Scienze dell’Alimentazione, C.N.R., 83100 Avellino, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
19
|
Zhong Y, Li H, Li P, Chen Y, Zhang M, Yuan Z, Zhang Y, Xu Z, Luo G, Fang Y, Li X. Exosomes: A New Pathway for Cancer Drug Resistance. Front Oncol 2021; 11:743556. [PMID: 34631581 PMCID: PMC8497983 DOI: 10.3389/fonc.2021.743556] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) that are secreted into body fluids by multiple cell types and are enriched in bioactive molecules, although their exact contents depend on the cells of origin. Studies have shown that exosomes in the tumor microenvironment affect tumor growth, metastasis and drug resistance by mediating intercellular communication and the transport of specific molecules, although their exact mechanisms of action need to be investigated further. In this review, we have summarized current knowledge on the relationship between tumor drug resistance and exosomes, and have discussed the potential applications of exosomes as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yunbin Zhong
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peiwen Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Dermatology Department, The First Hospital of Changsha, Changsha, China
| | - Mengyao Zhang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhendong Yuan
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Yufang Zhang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Geng Luo
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Yuan Fang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Hagey DW, Kordes M, Görgens A, Mowoe MO, Nordin JZ, Moro CF, Löhr J, EL Andaloussi S. Extracellular vesicles are the primary source of blood-borne tumour-derived mutant KRAS DNA early in pancreatic cancer. J Extracell Vesicles 2021; 10:e12142. [PMID: 34595842 PMCID: PMC8485184 DOI: 10.1002/jev2.12142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Up to now, the field of liquid biopsies has focused on circulating tumour DNA and cells, though extracellular vesicles (EVs) have been of increasing interest in recent years. Thus, reported sources of tumour-derived nucleic acids include leukocytes, platelets and apoptotic bodies (AB), as well as large (LEV) and small (SEV) EVs. Despite these competing claims, there has yet to be a standardized comparison of the tumour-derived DNA associated with different components of blood. To address this issue, we collected twenty-three blood samples from seventeen patients with pancreatic cancers of known mutant KRAS G12 genotype, and divided them into two groups based on the time of patient survival following sampling. After collecting red and white blood cells, we subjected 1 ml aliquots of platelet rich plasma to differential centrifugation in order to separate the platelets, ABs, LEVs, SEVs and soluble proteins (SP) present. We then confirmed the enrichment of specific blood components in each differential centrifugation fraction using electron microscopy, Western blotting, nanoparticle tracking analysis and bead-based multiplex flow cytometry assays. By targeting wild type and tumour-specific mutant KRAS alleles using digital PCR, we found that the levels of mutant KRAS DNA were highest in association with LEVs and SEVs early, and with SEVs and SP late in disease progression. Importantly, we established that SEVs were the most enriched in tumour-derived DNA throughout disease progression, and verified this association using size exclusion chromatography. This work provides important direction for the rapidly expanding field of liquid biopsies by supporting an increased focus on EVs as a source of tumour-derived DNA.
Collapse
Affiliation(s)
- Daniel W. Hagey
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Maximilian Kordes
- Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
- Department of Upper Abdominal DiseasesKarolinska University HospitalStockholmSweden
| | - André Görgens
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg EssenEssenGermany
| | - Metoboroghene O. Mowoe
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Institute for Infectious Diseases and Molecular MedicineDivision of Chemical and Systems BiologyUniversity of Cape TownCape TownSouth Africa
| | - Joel Z. Nordin
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Molecular TherapyNational Institute of NeuroscienceNational Center of Neurology and Psychiatry (NCNP)TokyoJapan
| | - Carlos Fernández Moro
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology/CytologyKarolinska University HospitalStockholmSweden
| | - J.‐Matthias Löhr
- Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
- Department of Upper Abdominal DiseasesKarolinska University HospitalStockholmSweden
| | | |
Collapse
|
21
|
Giunta EF, Annaratone L, Bollito E, Porpiglia F, Cereda M, Banna GL, Mosca A, Marchiò C, Rescigno P. Molecular Characterization of Prostate Cancers in the Precision Medicine Era. Cancers (Basel) 2021; 13:4771. [PMID: 34638258 PMCID: PMC8507555 DOI: 10.3390/cancers13194771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) therapy has been recently revolutionized by the approval of new therapeutic agents in the metastatic setting. However, the optimal therapeutic strategy in such patients should be individualized in the light of prognostic and predictive molecular factors, which have been recently studied: androgen receptor (AR) alterations, PTEN-PI3K-AKT pathway deregulation, homologous recombination deficiency (HRD), mismatch repair deficiency (MMRd), and tumor microenvironment (TME) modifications. In this review, we highlighted the clinical impact of prognostic and predictive molecular factors in PCa patients' outcomes, identifying biologically distinct subtypes. We further analyzed the relevant methods to detect these factors, both on tissue, i.e., immunohistochemistry (IHC) and molecular tests, and blood, i.e., analysis of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). Moreover, we discussed the main pros and cons of such techniques, depicting their present and future roles in PCa management, throughout the precision medicine era.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Enrico Bollito
- Department of Pathology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10043 Turin, Italy;
| | - Matteo Cereda
- Cancer Genomics and Bioinformatics Unit, IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, 10060 Turin, Italy;
- Candiolo Cancer Institute, FPO—IRCCS, Str. Prov.le 142, km 3.95, 10060 Candiolo, Italy
| | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth PO2 8QD, UK;
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.A.); (C.M.)
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
22
|
A New Approach for Prostate Cancer Diagnosis by miRNA Profiling of Prostate-Derived Plasma Small Extracellular Vesicles. Cells 2021; 10:cells10092372. [PMID: 34572021 PMCID: PMC8467918 DOI: 10.3390/cells10092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Vesicular miRNA has emerged as a promising marker for various types of cancer, including prostate cancer (PC). In the advanced stage of PC, the cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant portion of circulating vesicles and may mediate a detectable change in the plasma vesicular miRNA profile. However, SEVs secreted by small tumor in the prostate gland constitute a tiny fraction of circulating vesicles and cause undetectable miRNA pattern changes. Thus, the isolation and miRNA profiling of a specific prostate-derived fraction of SEVs can improve the diagnostic potency of the methods based on vesicular miRNA analysis. Prostate-specific membrane antigen (PSMA) was selected as a marker of prostate-derived SEVs. Super-paramagnetic beads (SPMBs) were functionalized by PSMA-binding DNA aptamer (PSMA-Apt) via a click reaction. The efficacy of SPMB-PSMA-Apt complex formation and PSMA(+)SEVs capture were assayed by flow cytometry. miRNA was isolated from the total population of SEVs and PSMA(+)SEVs of PC patients (n = 55) and healthy donors (n = 30). Four PC-related miRNAs (miR-145, miR-451a, miR-143, and miR-221) were assayed by RT-PCR. The click chemistry allowed fixing DNA aptamers onto the surface of SPMB with an efficacy of up to 89.9%. The developed method more effectively isolates PSMA(+)SEVs than relevant antibody-based technology. The analysis of PC-related miRNA in the fraction of PSMA(+)SEVs was more sensitive and revealed distinct diagnostic potency (AUC: miR-145, 0.76; miR-221, 0.7; miR-451a, 0.65; and miR-141, 0.64) than analysis of the total SEV population. Thus, isolation of prostate-specific SEVs followed by analysis of vesicular miRNA might be a promising PC diagnosis method.
Collapse
|
23
|
Exosomes and prostate cancer management. Semin Cancer Biol 2021; 86:101-111. [PMID: 34384877 DOI: 10.1016/j.semcancer.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
Exosomes (and other extracellular vesicles) are now part of the cancer research landscape, involved both as players in pathophysiological mechanisms, as biomarkers of the cancer process and as therapeutic tools. One step they have yet to take is to move into routine clinical practice and management of prostate cancer is an example of this necessary maturation. More than for many other cancers and because a possible alternative is active surveillance (neither removal nor destruction), the diagnosis of prostate cancer does not only involve the detection of cancerous cells but also the determination of its true aggressiveness. By measuring TRMPRSS2:ERG fusion and PCA3 transcripts in urine exosomes, the EPI assay seems able to help prostate biopsy decision. Results from clinical studies showed that it can reduce the proportion of unnecessary biopsies while missing only a minimal proportion of clinically significant cancers. In metastatic prostate cancer, after failure of a first step androgen deprivation therapy, when a choice has to be made between a second-generation androgen receptor (AR) signaling inhibitor and taxane-based chemotherapy, detection of the AR splicing variant AR-V7 in circulating tumor cells (CTCs) has appeared promising. Whether exosomes could be a better material (simpler to isolate from the bloodstream than CTCs?) to detect AR-V7 has been suggested by some studies and remains to be confirmed. At last, a couple of exploratory studies either targeted or used exosomes to treat prostate cancer, by respectively inhibiting their secretion (to prevent exosome-mediated transfer of biologically active oncogenic actors), or loading them with immunogenic cancer-specific proteins (to generate anticancer vaccine) or with pharmacologic agents. Overall efforts are however still needed to confirm these results and generalize exosome-based diagnostic, prognostic or therapeutic strategies in prostate cancer management.
Collapse
|
24
|
Saldana C, Majidipur A, Beaumont E, Huet E, de la Taille A, Vacherot F, Firlej V, Destouches D. Extracellular Vesicles in Advanced Prostate Cancer: Tools to Predict and Thwart Therapeutic Resistance. Cancers (Basel) 2021; 13:cancers13153791. [PMID: 34359692 PMCID: PMC8345194 DOI: 10.3390/cancers13153791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. At first, advanced PCa is treated by androgen deprivation therapy with a good initial response. Nevertheless, recurrences occur, leading to Castrate-Resistance Prostate Cancer (CRPC). During the last decade, new therapies based on inhibition of the androgen receptor pathway or taxane chemotherapies have been used to treat CRPC patients leading to an increase in overall survival, but the occurrence of resistances limits their benefits. Numerous studies have demonstrated the implication of extracellular vesicles (EVs) in different cancer cellular mechanisms. Thus, the possibility to isolate and explore EVs produced by tumor cells in plasma/sera represents an important opportunity for the deciphering of those mechanisms and the discovery of biomarkers. Herein, we summarized the role of EVs in therapeutic resistance of advanced prostate cancer and their use to find biomarkers able to predict these resistances.
Collapse
Affiliation(s)
- Carolina Saldana
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
- AP-HP, Hopital Henri-Mondor, Service Oncologie, F-94010 Creteil, France
| | - Amene Majidipur
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
| | - Emma Beaumont
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
| | - Eric Huet
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
| | - Alexandre de la Taille
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
- AP-HP, Hopital Henri-Mondor, Service Urologie, F-94010 Creteil, France
| | - Francis Vacherot
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
| | - Virginie Firlej
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
| | - Damien Destouches
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (C.S.); (A.M.); (E.B.); (E.H.); (A.d.l.T.); (F.V.); (V.F.)
- Correspondence: ; Tel.: +33-(0)1-49-81-36-14; Fax: +33-(0)1-49-81-39-00
| |
Collapse
|
25
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
26
|
Valencia K, Montuenga LM. Exosomes in Liquid Biopsy: The Nanometric World in the Pursuit of Precision Oncology. Cancers (Basel) 2021; 13:2147. [PMID: 33946893 PMCID: PMC8124368 DOI: 10.3390/cancers13092147] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Among the different components that can be analyzed in liquid biopsy, the utility of exosomes is particularly promising because of their presence in all biological fluids and their potential for multicomponent analyses. Exosomes are extracellular vesicles with an average size of ~100 nm in diameter with an endosomal origin. All eukaryotic cells release exosomes as part of their active physiology. In an oncologic patient, up to 10% of all the circulating exosomes are estimated to be tumor-derived exosomes. Exosome content mirrors the features of its cell of origin in terms of DNA, RNA, lipids, metabolites, and cytosolic/cell-surface proteins. Due to their multifactorial content, exosomes constitute a unique tool to capture the complexity and enormous heterogeneity of cancer in a longitudinal manner. Due to molecular features such as high nucleic acid concentrations and elevated coverage of genomic driver gene sequences, exosomes will probably become the "gold standard" liquid biopsy analyte in the near future.
Collapse
Affiliation(s)
- Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Navarra Health Research Institute (IDISNA), 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | - Luis M. Montuenga
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Navarra Health Research Institute (IDISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
27
|
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol 2021; 32:466-477. [PMID: 33548389 PMCID: PMC8268076 DOI: 10.1016/j.annonc.2021.01.074] [Citation(s) in RCA: 434] [Impact Index Per Article: 144.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy in cancer has gained momentum in clinical research and is experiencing a boom for a variety of applications. There are significant efforts to utilize liquid biopsies in cancer for early detection and treatment stratification, as well as residual disease and recurrence monitoring. Although most efforts have used circulating tumor cells and circulating tumor DNA for this purpose, exosomes and other extracellular vesicles have emerged as a platform with potentially broader and complementary applications. Exosomes/extracellular vesicles are small vesicles released by cells, including cancer cells, into the surrounding biofluids. These exosomes contain tumor-derived materials such as DNA, RNA, protein, lipid, sugar structures, and metabolites. In addition, exosomes carry molecules on their surface that provides clues regarding their origin, making it possible to sort vesicle types and enrich signatures from tissue-specific origins. Exosomes are part of the intercellular communication system and cancer cells frequently use them as biological messengers to benefit their growth. Since exosomes are part of the disease process, they have become of tremendous interest in biomarker research. Exosomes are remarkably stable in biofluids, such as plasma and urine, and can be isolated for clinical evaluation even in the early stages of the disease. Exosome-based biomarkers have quickly become adopted in the clinical arena and the first exosome RNA-based prostate cancer test has already helped >50 000 patients in their decision process and is now included in the National Comprehensive Cancer Network guidelines for early prostate cancer detection. This review will discuss the advantages and challenges of exosome-based liquid biopsies for tumor biomarkers and clinical implementation in the context of circulating tumor DNA and circulating tumor cells.
Collapse
Affiliation(s)
- W Yu
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - J Hurley
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | - D Roberts
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA
| | | | - D Enderle
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - M Noerholm
- Exosome Diagnostics GmbH, a Bio-Techne brand, Martinsried, Germany
| | - X O Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Neuroscience Program, Harvard Medical School, Boston, USA
| | - J K Skog
- Exosome Diagnostics, Inc., a Bio-Techne brand, Waltham, USA.
| |
Collapse
|
28
|
Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030466. [PMID: 33800141 PMCID: PMC7998238 DOI: 10.3390/diagnostics11030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.
Collapse
|
29
|
Isolation of Extracellular Vesicles from Biological Fluids via the Aggregation-Precipitation Approach for Downstream miRNAs Detection. Diagnostics (Basel) 2021; 11:diagnostics11030384. [PMID: 33668297 PMCID: PMC7996260 DOI: 10.3390/diagnostics11030384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) have high potential as sources of biomarkers for non-invasive diagnostics. Thus, a simple and productive method of EV isolation is demanded for certain scientific and medical applications of EVs. Here we aim to develop a simple and effective method of EV isolation from different biofluids, suitable for both scientific, and clinical analyses of miRNAs transported by EVs. The proposed aggregation-precipitation method is based on the aggregation of EVs using dextran blue and the subsequent precipitation of EVs using 1.5% polyethylene glycol solutions. The developed method allows the effective isolation of EVs from plasma and urine. As shown using TEM, dynamic light scattering, and miRNA analyses, this method is not inferior to ultracentrifugation-based EV isolation in terms of its efficacy, lack of inhibitors for polymerase reactions and applicable for both healthy donors and cancer patients. This method is fast, simple, does not need complicated equipment, can be adapted for different biofluids, and has a low cost. The aggregation-precipitation method of EV isolation accessible and suitable for both research and clinical laboratories. This method has the potential to increase the diagnostic and prognostic utilization of EVs and miRNA-based diagnostics of urogenital pathologies.
Collapse
|
30
|
Amintas S, Vendrely V, Dupin C, Buscail L, Laurent C, Bournet B, Merlio JP, Bedel A, Moreau-Gaudry F, Boutin J, Dabernat S, Buscail E. Next-Generation Cancer Biomarkers: Extracellular Vesicle DNA as a Circulating Surrogate of Tumor DNA. Front Cell Dev Biol 2021; 8:622048. [PMID: 33604335 PMCID: PMC7884755 DOI: 10.3389/fcell.2020.622048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by healthy tissues and tumor cells and are released in various bodily fluids, including blood. They are limited by bilayer phospholipidic membranes, and they carry a rich content in biomolecules. Their release cleanses the cells of their waste or serves as functional local and distant cell-cell communication and molecular exchange particles. This rich and heterogeneous content has been given intense attention in cancer physiopathology because EVs support cancer control and progression. Because of their specific active cargo, they are being evaluated as carriers of liquid biopsy biomarkers. Compared to soluble circulating biomarkers, their complexity might provide rich information on tumor and metastases status. Thanks to the acquired genomic changes commonly observed in oncogenic processes, double-stranded DNA (dsDNA) in EVs might be the latest most promising biomarker of tumor presence and complexity. This review will focus on the recent knowledge on the DNA inclusion in vesicles, the technical aspects of EV-DNA detection and quantification, and the use of EV-DNA as a clinical biomarker.
Collapse
Affiliation(s)
- Samuel Amintas
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Véronique Vendrely
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Charles Dupin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Louis Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Christophe Laurent
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Barbara Bournet
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
| | - Jean-Philippe Merlio
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
- INSERM U1053, Bordeaux, France
| | - Aurélie Bedel
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Julian Boutin
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Département des Sciences Biologiques et Médicales, Université de Bordeaux, Bordeaux, France
- U1035 Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Etienne Buscail
- Centre Hospitalier Universitaire (CHU) de Toulouse, Toulouse, France
- INSERM, UMR-1220, IRSD, University of Toulouse III, Toulouse, France
| |
Collapse
|
31
|
Bernardi S, Farina M. Exosomes and Extracellular Vesicles in Myeloid Neoplasia: The Multiple and Complex Roles Played by These " Magic Bullets". BIOLOGY 2021; 10:biology10020105. [PMID: 33540594 PMCID: PMC7912829 DOI: 10.3390/biology10020105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Extracellular vesicles (EVs) are released by the majority of cell types and can be isolated from both cell cultures and body fluids. They are involved in cell-to-cell communication and may shuttle different messages (RNA, DNA, and proteins). These messages are known to influence the microenvironment of cells and their behavior. In recent years, some evidence about the involvement of EVs and exosomes, an EV subgroup, in immunomodulation, the transfer of disease markers, and the treatment of myeloid malignancies have been reported. Little is known about these vesicles in this particular setting of hematologic neoplasia; here, we summarize and critically review the available results, aiming to encourage further investigations. Abstract Extracellular vesicles (exosomes, in particular) are essential in multicellular organisms because they mediate cell-to-cell communication via the transfer of secreted molecules. They are able to shuttle different cargo, from nucleic acids to proteins. The role of exosomes has been widely investigated in solid tumors, which gave us surprising results about their potential involvement in pathogenesis and created an opening for liquid biopsies. Less is known about exosomes in oncohematology, particularly concerning the malignancies deriving from myeloid lineage. In this review, we aim to present an overview of immunomodulation and the microenvironment alteration mediated by exosomes released by malicious myeloid cells. Afterwards, we review the studies reporting the use of exosomes as disease biomarkers and their influence in response to treatment, together with the recent experiences that have focused on the use of exosomes as therapeutic tools. The further development of new technologies and the increased knowledge of biological (exosomes) and clinical (myeloid neoplasia) aspects are expected to change the future approaches to these malignancies.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- Correspondence: or ; Tel.: +39-0303998464
| | - Mirko Farina
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy;
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
32
|
Taylor C, Chacko S, Davey M, Lacroix J, MacPherson A, Finn N, Wajnberg G, Ghosh A, Crapoulet N, Lewis SM, Ouellette RJ. Peptide-Affinity Precipitation of Extracellular Vesicles and Cell-Free DNA Improves Sequencing Performance for the Detection of Pathogenic Mutations in Lung Cancer Patient Plasma. Int J Mol Sci 2020; 21:E9083. [PMID: 33260345 PMCID: PMC7730179 DOI: 10.3390/ijms21239083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liquid biopsy is a minimally-invasive diagnostic method that may improve access to molecular profiling for non-small cell lung cancer (NSCLC) patients. Although cell-free DNA (cf-DNA) isolation from plasma is the standard liquid biopsy method for detecting DNA mutations in cancer patients, the sensitivity can be highly variable. Vn96 is a peptide with an affinity for both extracellular vesicles (EVs) and circulating cf-DNA. In this study, we evaluated whether peptide-affinity (PA) precipitation of EVs and cf-DNA from NSCLC patient plasma improves the sensitivity of single nucleotide variants (SNVs) detection and compared observed SNVs with those reported in the matched tissue biopsy. NSCLC patient plasma was subjected to either PA precipitation or cell-free methods and total nucleic acid (TNA) was extracted; SNVs were then detected by next-generation sequencing (NGS). PA led to increased recovery of DNA as well as an improvement in NGS sequencing parameters when compared to cf-TNA. Reduced concordance with tissue was observed in PA-TNA (62%) compared to cf-TNA (81%), mainly due to identification of SNVs in PA-TNA that were not observed in tissue. EGFR mutations were detected in PA-TNA with 83% sensitivity and 100% specificity. In conclusion, PA-TNA may improve the detection limits of low-abundance alleles using NGS.
Collapse
Affiliation(s)
- Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Jacynthe Lacroix
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Alexander MacPherson
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Nicholas Finn
- Dr Léon-Richard Oncology Center, Moncton, NB E1C 8X3, Canada;
| | - Gabriel Wajnberg
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (C.T.); (S.C.); (M.D.); (J.L.); (A.M.); (G.W.); (A.G.); (N.C.); (S.M.L.)
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
33
|
Zocco D, Bernardi S, Novelli M, Astrua C, Fava P, Zarovni N, Carpi FM, Bianciardi L, Malavenda O, Quaglino P, Foroni C, Russo D, Chiesi A, Fierro MT. Isolation of extracellular vesicles improves the detection of mutant DNA from plasma of metastatic melanoma patients. Sci Rep 2020; 10:15745. [PMID: 32978468 PMCID: PMC7519075 DOI: 10.1038/s41598-020-72834-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Detection of BRAFV600E within cell free tumor DNA (ctDNA) is emerging as a promising means to improve patients' stratification or enable BRAF inhibitor (BRAFi) therapeutic monitoring in a minimally invasive manner. Here, we investigated whether extracellular vesicle-(EV)-associated-DNA (EV-DNA) has value as an alternative source of circulating BRAFV600E. To do so, we identified a clinical practice-compatible protocol for the isolation of EV-DNA and assessed BRAF gene status on plasma samples from metastatic melanoma patients at the beginning and during BRAFi therapy. This protocol uses a peptide with high affinity for EVs and it has been found to recover more mutant DNA from plasma than standard ultracentrifugation. Molecular analyses revealed that mutant DNA is largely unprotected from nuclease digestion, interacting with the outer side of the EV membrane or directly with the peptide. When used on clinical samples, we found that the protocol improves the detection of BRAFV600E gene copies in comparison to the reference protocol for ctDNA isolation. Taken together, these findings indicate that EVs are a promising source of mutant DNA and should be considered for the development of next-generation liquid biopsy approaches.
Collapse
Affiliation(s)
| | - Simona Bernardi
- Lab. CREA - A.I.L., Spedali Civili di Brescia, Brescia, Italy
- Chair of Hematology - Unit of Bone Marrow Transplantation, University of Brescia, Brescia, Italy
| | - Mauro Novelli
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Chiara Astrua
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paolo Fava
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | | | | | | | - Ottavia Malavenda
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Pietro Quaglino
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Chiara Foroni
- Lab. CREA - A.I.L., Spedali Civili di Brescia, Brescia, Italy
- Chair of Hematology - Unit of Bone Marrow Transplantation, University of Brescia, Brescia, Italy
| | - Domenico Russo
- Lab. CREA - A.I.L., Spedali Civili di Brescia, Brescia, Italy
- Chair of Hematology - Unit of Bone Marrow Transplantation, University of Brescia, Brescia, Italy
| | | | - Maria Teresa Fierro
- Laboratorio Immunopatologia Cutanea, Clinica Dermatologica, Dipartimento Scienze Mediche, Università di Torino, Turin, Italy
- Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
34
|
Bernardi S, Balbi C. Extracellular Vesicles: From Biomarkers to Therapeutic Tools. BIOLOGY 2020; 9:biology9090258. [PMID: 32878063 PMCID: PMC7564466 DOI: 10.3390/biology9090258] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Intercellular communication is an essential hallmark of multicellular organisms and can be mediated through direct cell–cell contact or transfer of secreted molecules. In the last two decades, a third mechanism for intercellular communication has emerged that involves intercellular transfer of extracellular vesicles (EVs). EVs are membranous vesicles of 30–5000 nm in size. Based on their dimension and biogenesis, EVs can be divided into different categories, such as microvesicles, apoptotic bodies, ectosomes, and exosomes. It has already been demonstrated that protein changes, expressed on the surfaces or in the content of these vesicles, may reflect the status of producing cells. For this reason, EVs, and exosomes in particular, are considered ideal biomarkers in several types of disease—from cancer diagnosis to heart rejection. This aspect opens different opportunities in EVs clinical application, considering the importance given to liquid biopsy in the recent years. Furthermore, extracellular vesicles can be natural or engineered carriers of cytoprotective or cytotoxic factors and applied, as a therapeutic tool, from regenerative medicine to target cancer therapy. This is of pivotal importance in the so called “era of the 4P medicine”. This Editorial focuses on recent findings pertaining to EVs in different medical areas, from biomarkers to therapeutic applications.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-003-9030-399-8464
| | - Carolina Balbi
- Cellular & Molecular Cardiology Laboratory, Cardiocentro Ticino, Associated Institute of University of Zurich, 6900 Lugano, Switzerland;
| |
Collapse
|