1
|
Molecular Targets in Salivary Gland Cancers: A Comprehensive Genomic Analysis of 118 Mucoepidermoid Carcinoma Tumors. Biomedicines 2023; 11:biomedicines11020519. [PMID: 36831055 PMCID: PMC9953533 DOI: 10.3390/biomedicines11020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Salivary gland carcinomas (SGC) are histologically diverse cancers and next-generation sequencing (NGS) to identify key molecular targets is an important aspect in the management of advanced cases. METHODS DNA was extracted from paraffin embedded tissues of advanced SGC and comprehensive genomic profiling (CGP) was carried out to evaluate for base substitutions, short insertions, deletions, copy number changes, gene fusions and rearrangements. Tumor mutation burden (TMB) was calculated on approximately 1.25 Mb. Some 324 genes in the FoundationOne CDX panel were analyzed. RESULTS Mucoepidermoid carcinoma (MECa) mutations were assessed. CDKN2A and CDKN2B GA were common in mucoepidermoid carcinoma (MECa) (52.5 and 30.5%). PIK3CA was also common in MECa (16.9%). ERBB2 amplification/short variants (amp/SV) were found in MECa (5.9/0%). HRAS GA was common in MECa (14.4%) as well. Other targets, including BAP1, PTEN, and KRAS, were noted but had a low incidence. In terms of immunotherapy (IO)-predictive markers, TMB > 10 was more common in MECa (16.9%). PDL1 high was also seen in MECa (4.20%). CONCLUSION SGC are rare tumors with no FDA-approved treatment options. This large dataset reveals many opportunities for IO and targeted therapy contributing to the continuously increased precision in the selection of treatment for these patients.
Collapse
|
2
|
Doan C, Aouizerat BE, Ye Y, Dang D, Asam K, Bhattacharya A, Howard T, Patel YK, Viet DT, Figueroa JD, Zhong JF, Thomas CM, Morlandt AB, Yu G, Callahan NF, Allen CT, Grandhi A, Herford AS, Walker PC, Nguyen K, Kidd SC, Lee SC, Inman JC, Slater JM, Viet CT. Neurotrophin Pathway Receptors NGFR and TrkA Control Perineural Invasion, Metastasis, and Pain in Oral Cancer. Adv Biol (Weinh) 2022; 6:e2200190. [PMID: 35925599 PMCID: PMC9533666 DOI: 10.1002/adbi.202200190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.
Collapse
Affiliation(s)
- Coleen Doan
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA
| | - Bradley E. Aouizerat
- Department of Oral & Maxillofacial Surgery, New York University College of Dentistry, NY, United States
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Yi Ye
- Department of Oral & Maxillofacial Surgery, New York University College of Dentistry, NY, United States
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Dongmin Dang
- Department of Oral & Maxillofacial Surgery, New York University College of Dentistry, NY, United States
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Kesava Asam
- Department of Oral & Maxillofacial Surgery, New York University College of Dentistry, NY, United States
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Aditi Bhattacharya
- Department of Oral & Maxillofacial Surgery, New York University College of Dentistry, NY, United States
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Timothy Howard
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Yogin K. Patel
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Dan T. Viet
- Bluestone Center for Clinical Research, New York University College of Dentistry, NY, United States
| | - Johnny D. Figueroa
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA
| | - Carissa M. Thomas
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Anthony B. Morlandt
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
- Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, NY
| | - Nicholas F. Callahan
- Department of Oral and Maxillofacial Surgery, University of Illinois Chicago, College of Dentistry, Chicago, IL
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD
| | - Anupama Grandhi
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA
| | - Alan S. Herford
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA
| | - Paul C. Walker
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Khanh Nguyen
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Stephanie C. Kidd
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Steve C. Lee
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Jared C. Inman
- Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Jason M. Slater
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA
| | - Chi T. Viet
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA
| |
Collapse
|