1
|
Martin V, Guerra B, Hernaez B, Kappler-Gratias S, Gallardo F, Guerra M, Andres G, Alejo A. A novel live DNA tagging system for African swine fever virus shows that bisbenzimide Hoechst 33342 can effectively block its replication. Antiviral Res 2024; 230:105973. [PMID: 39168188 DOI: 10.1016/j.antiviral.2024.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
African swine fever virus (ASFV) infection causes a frequently fatal disease in domestic swine that has affected more than 50 countries worldwide since 2021, with a major impact on animal welfare and economy. The development of effective vaccines or antivirals against this disease are urgently required for its effective control. Live detection of viral replication has been used as a tool for the screening and characterization of antiviral compounds in other dsDNA genome containing viruses. Here, we have adapted the ANCHOR fluorescent DNA labelling system to ASFV by constructing and characterizing a novel recombinant virus. We show that this virus is viable and effectively tags viral DNA replication sites, which can be detected and quantified in real time. Further, we have used high content cell microscopy to test the antiviral activity of bisbenzimide compounds and show that Hoechst 33342 has specific anti-ASFV activity. We expect this novel tool to be useful both in the further study of ASFV replication as in the screening of new specific antiviral compounds.
Collapse
Affiliation(s)
- Veronica Martin
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, 28130, Valdeolmos, Madrid, Spain.
| | - Beatriz Guerra
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, 28130, Valdeolmos, Madrid, Spain.
| | - Bruno Hernaez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Cantoblanco, Madrid, Spain.
| | | | - Franck Gallardo
- NeoVirTech SAS, 1 Place Pierre Potier, 31000, Toulouse, France.
| | - Milagros Guerra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Cantoblanco, Madrid, Spain.
| | - German Andres
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, 28130, Valdeolmos, Madrid, Spain.
| | - Ali Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, 28130, Valdeolmos, Madrid, Spain.
| |
Collapse
|
2
|
Marquette CA, Petiot E, Spindler A, Ebel C, Nzepa M, Moreau B, Erbs P, Balloul JM, Quemeneur E, Zaupa C. 3D bioprinted CRC model brings to light the replication necessity of an oncolytic vaccinia virus encoding FCU1 gene to exert an efficient anti-tumoral activity. Front Oncol 2024; 14:1384499. [PMID: 39091906 PMCID: PMC11292208 DOI: 10.3389/fonc.2024.1384499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The oncolytic virus represents a promising therapeutic strategy involving the targeted replication of viruses to eliminate cancer cells, while preserving healthy ones. Despite ongoing clinical trials, this approach encounters significant challenges. This study delves into the interaction between an oncolytic virus and extracellular matrix mimics (ECM mimics). A three-dimensional colorectal cancer model, enriched with ECM mimics through bioprinting, was subjected to infection by an oncolytic virus derived from the vaccinia virus (oVV). The investigation revealed prolonged expression and sustained oVV production. However, the absence of a significant antitumor effect suggested that the virus's progression toward non-infected tumoral clusters was hindered by the ECM mimics. Effective elimination of tumoral cells was achieved by introducing an oVV expressing FCU1 (an enzyme converting the prodrug 5-FC into the chemotherapeutic compound 5-FU) alongside 5-FC. Notably, this efficacy was absent when using a non-replicative vaccinia virus expressing FCU1. Our findings underscore then the crucial role of oVV proliferation in a complex ECM mimics. Its proliferation facilitates payload expression and generates a bystander effect to eradicate tumors. Additionally, this study emphasizes the utility of 3D bioprinting for assessing ECM mimics impact on oVV and demonstrates how enhancing oVV capabilities allows overcoming these barriers. This showcases the potential of 3D bioprinting technology in designing purpose-fit models for such investigations.
Collapse
Affiliation(s)
- Christophe A. Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne, France
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne, France
| | | | | | - Mael Nzepa
- Transgene SA, Illkirch-Graffenstaden, France
| | | | | | | | | | | |
Collapse
|
3
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Liu D, Pan L, Zhai H, Qiu HJ, Sun Y. Virus tracking technologies and their applications in viral life cycle: research advances and future perspectives. Front Immunol 2023; 14:1204730. [PMID: 37334362 PMCID: PMC10272434 DOI: 10.3389/fimmu.2023.1204730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Viruses are simple yet highly pathogenic microorganisms that parasitize within cells and pose serious threats to the health, economic development, and social stability of both humans and animals. Therefore, it is crucial to understand the dynamic mechanism of virus infection in hosts. One effective way to achieve this is through virus tracking technology, which utilizes fluorescence imaging to track the life processes of virus particles in living cells in real-time, providing a comprehensively and detailed spatiotemporal dynamic process and mechanism of virus infection. This paper provides a broad overview of virus tracking technology, including the selection of fluorescent labels and virus labeling components, the development of imaging microscopes, and its applications in various virus studies. Additionally, we discuss the possibilities and challenges of its future development, offering theoretical guidance and technical support for effective prevention and control of the viral disease outbreaks and epidemics.
Collapse
Affiliation(s)
| | | | | | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
5
|
Bustamante-Jaramillo LF, Fingal J, Blondot ML, Rydell GE, Kann M. Imaging of Hepatitis B Virus Nucleic Acids: Current Advances and Challenges. Viruses 2022; 14:v14030557. [PMID: 35336964 PMCID: PMC8950347 DOI: 10.3390/v14030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus infections are the main reason for hepatocellular carcinoma development. Current treatment reduces the viral load but rarely leads to virus elimination. Despite its medical importance, little is known about infection dynamics on the cellular level not at least due to technical obstacles. Regardless of infections leading to extreme viral loads, which may reach 1010 virions per mL serum, hepatitis B viruses are of low abundance and productivity in individual cells. Imaging of the infections in cells is thus a particular challenge especially for cccDNA that exists only in a few copies. The review describes the significance of microscopical approaches on genome and transcript detection for understanding hepatitis B virus infections, implications for understanding treatment outcomes, and recent microscopical approaches, which have not been applied in HBV research.
Collapse
Affiliation(s)
- Luisa F. Bustamante-Jaramillo
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Joshua Fingal
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Marie-Lise Blondot
- Microbiologie Fondamentale et Pathogénicité (MFP), CNRS UMR 5234, University of Bordeaux, 33076 Bordeaux, France;
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (L.F.B.-J.); (J.F.); (G.E.R.)
- Region Västra Götaland, Department of Clinical Microbiology, Sahlgrenska University Hospital, 405 30 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
6
|
Guo ZS. Oncolytic Virus Immunotherapy: Showcasing Impressive Progress in Special Issue II. Biomedicines 2021; 9:biomedicines9060663. [PMID: 34200560 PMCID: PMC8226691 DOI: 10.3390/biomedicines9060663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Zong-Sheng Guo
- UPMC Hillman Cancer Center and Departments of Surgery, Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Quentin-Froignant C, Kappler-Gratias S, Top S, Bertagnoli S, Gallardo F. ANCHOR-tagged equine herpesvirus 1: A new tool for monitoring viral infection and discovering new antiviral compounds. J Virol Methods 2021; 294:114194. [PMID: 34022301 DOI: 10.1016/j.jviromet.2021.114194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Equine herpesvirus 1 (EHV-1) is a causative agent of respiratory disorders, abortion and myeloencephalopathy in horses and has an important impact on equine health and economy. Several bacterial artificial chromosomes have already been developed and enabled identification and functional characterization of EHV-1 genes. Unfortunately, little is known about its replication. Here, the ANCHOR system was inserted by targeted homologous recombination into the equine herpesvirus genome. This insertion led to the conversion of EHV-1 DNA to auto-fluorescent spots easily detectable by fluorescence microscopy, and enabled production of an auto-fluorescent EHV-1 ANCHORGFP with tropism and replication kinetic like the parental strain. High resolution imaging allowed first visualization of EHV-1 replication from apparition of first viral genome to large replicative centers, in single cells or inside syncytia. Combined with high content microscopy, EHV-1 ANCHORGFP leads to identification of auranofin and azacytidine-5 as new potential antivirals to treat EHV-1 infection.
Collapse
Affiliation(s)
- Charlotte Quentin-Froignant
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France; IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | - Sokunthea Top
- NeoVirTech SAS, Centre Pierre Potier, Toulouse, France.
| | | | | |
Collapse
|
8
|
Meschichi A, Ingouff M, Picart C, Mirouze M, Desset S, Gallardo F, Bystricky K, Picault N, Rosa S, Pontvianne F. ANCHOR: A Technical Approach to Monitor Single-Copy Locus Localization in Planta. FRONTIERS IN PLANT SCIENCE 2021; 12:677849. [PMID: 34295343 PMCID: PMC8290188 DOI: 10.3389/fpls.2021.677849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 05/05/2023]
Abstract
Together with local chromatin structure, gene accessibility, and the presence of transcription factors, gene positioning is implicated in gene expression regulation. Although the basic mechanisms are expected to be conserved in eukaryotes, less is known about the role of gene positioning in plant cells, mainly due to the lack of a highly resolutive approach. In this study, we adapted the use of the ANCHOR system to perform real-time single locus detection in planta. ANCHOR is a DNA-labeling tool derived from the chromosome partitioning system found in many bacterial species. We demonstrated its suitability to monitor a single locus in planta and used this approach to track chromatin mobility during cell differentiation in Arabidopsis thaliana root epidermal cells. Finally, we discussed the potential of this approach to investigate the role of gene positioning during transcription and DNA repair in plants.
Collapse
Affiliation(s)
- Anis Meschichi
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Claire Picart
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, Perpignan, France
| | - Marie Mirouze
- Université de Montpellier, DIADE, Montpellier, France
- Institut de Recherche pour le Développement, DIADE, Montpellier, France
| | - Sophie Desset
- iGReD, CNRS UMR 6293, Université Clermont Auvergne, INSERM U1103, Clermont–Ferrand, France
| | | | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Nathalie Picault
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, Perpignan, France
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de Perpignan Via Domitia, Perpignan, France
- *Correspondence: Frédéric Pontvianne
| |
Collapse
|