1
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Gao Y, An T, Kuang Q, Wu Y, Liu S, Liang L, Yu M, Macrae A, Chen Y. The role of arbuscular mycorrhizal fungi in the alleviation of cadmium stress in cereals: A multilevel meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166091. [PMID: 37553055 DOI: 10.1016/j.scitotenv.2023.166091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic relationships between crop species and arbuscular mycorrhizal fungi (AMF) are crucial for plant health, productivity, and environmental sustainability. The roles of AMF in reducing crop stress caused by cadmium (Cd) toxicity and in the remediation of Cd-contaminated soil are not fully understood. Here we report on a meta-analysis that sought to identify the functions of AMF in cereals under Cd stress. A total of 54 articles published between January 1992 and September 2022 were used to create the dataset, which provided 7216 data sets on mycorrhizal cereals under Cd stress examined. AMF effects on colonization rate, biomass, physiological level, nutritional level, and plant Cd level were measured using the logarithmic response ratio (Ln R). The results showed that AMF overall greatly reduced 5.14 - 33.6 % Cd stress on cereals in greenhouse experiments under controlled conditions. AMF colonization significantly stimulated crop biomass by 65.7 %, boosted the formation of photosynthetic pigments (23.2 %), and greatly increased plant nitrogen (24.8 %) and phosphorus (58.4 %) uptake. The dilution effect of mycorrhizal plants made the Cd concentration decline by 25.2 % in AMF plants compared to non-mycorrhizal ones. AMF also alleviated Cd stress by improving osmotic regulators (soluble protein, sugar, and total proline, from 14.8 to 36.0 %) and lowering the membrane lipid peroxidation product (MDA, 12.9 %). Importantly, the results from the random forest and model selection analysis demonstrated that crop type, soil characteristics, chemical form, and Cd levels were the main factors determining the function of AMF in alleviating Cd stress. Additionally, there was a significant interaction between AMF colonization rate and Cd addition, but their interactive effect was less than the colonization rate alone. This meta-analysis demonstrated that AMF inoculation could be considered as a promising strategy for mitigation of Cd stress in cereals.
Collapse
Affiliation(s)
- Yamin Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqiang Kuang
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Wu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo Liu
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liyan Liang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology, and Department of Horticulture, Foshan University, Foshan 528000, China; The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Andrew Macrae
- Universidade Federal do Rio de Janeiro, Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco K, 2 Andar-Sala 032, Rio de Janeiro 21941-902, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Av. Prof. Rodolpho Paulo Rocco, s/n-Prédio do CCS-Bloco I, 1 Andar-Sala 047, Rio de Janeiro 21941-902, Brazil
| | - Yinglong Chen
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
4
|
Meng J, Wang WX. Differentiation and decreased genetic diversity in field contaminated oysters Crassostrea hongkongensis: Identification of selection signatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122101. [PMID: 37364753 DOI: 10.1016/j.envpol.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The extent to which chemical contamination affects the population structure and genetic diversity of natural populations remains elusive. Here, we used the whole-genome resequencing and transcriptome to diagnose the effects of long-term exposure to multiple elevated chemical pollutants on the population differentiation and genetic diversity in oysters Crassostrea hongkongensis in a typically polluted Pearl River Estuary (PRE) of Southern China. Population structure revealed an obvious differentiation between the PRE oysters and those collected from a nearby clean Beihai (BH) individuals, while no significant differentiation was observed among individuals collected from the three pollution sites within PRE due to the high gene flow. The decreased genetic diversity in the PRE oysters reflected the long-term effects of chemical pollutants. Selective sweeps between BH and PRE oysters revealed that chemical defensome genes, including glutathione S-transferase, zinc transporter, were responsible for their differentiation, sharing common metabolic process of other pollutants. Combined with the genome-wide association analysis, 25 regions containing 77 genes were identified to be responsible for the direct selection regions of metals. Linkage disequilibrium blocks and haplotypes within these regions provided the biomarkers of permanent effects. Our results provide important insights to the genetic mechanisms underlying the rapid evolution under chemical contamination in marine bivalves.
Collapse
Affiliation(s)
- Jie Meng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Wuhan, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
do Rosario MC, Bey GR, Nmezi B, Liu F, Oranburg T, Cohen ASA, Coffman KA, Brown MR, Kiselyov K, Waisfisz Q, Flohil MT, Siddiqui S, Rosenfeld JA, Iglesias A, Girisha KM, Wolf NI, Padiath QS, Shukla A. Variants in the zinc transporter TMEM163 cause a hypomyelinating leukodystrophy. Brain 2022; 145:4202-4209. [PMID: 35953447 PMCID: PMC10200305 DOI: 10.1093/brain/awac295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/12/2022] [Accepted: 07/31/2022] [Indexed: 11/12/2022] Open
Abstract
Hypomyelinating leukodystrophies comprise a subclass of genetic disorders with deficient myelination of the CNS white matter. Here we report four unrelated families with a hypomyelinating leukodystrophy phenotype harbouring variants in TMEM163 (NM_030923.5). The initial clinical presentation resembled Pelizaeus-Merzbacher disease with congenital nystagmus, hypotonia, delayed global development and neuroimaging findings suggestive of significant and diffuse hypomyelination. Genomic testing identified three distinct heterozygous missense variants in TMEM163 with two unrelated individuals sharing the same de novo variant. TMEM163 is highly expressed in the CNS particularly in newly myelinating oligodendrocytes and was recently revealed to function as a zinc efflux transporter. All the variants identified lie in highly conserved residues in the cytoplasmic domain of the protein, and functional in vitro analysis of the mutant protein demonstrated significant impairment in the ability to efflux zinc out of the cell. Expression of the mutant proteins in an oligodendroglial cell line resulted in substantially reduced mRNA expression of key myelin genes, reduced branching and increased cell death. Our findings indicate that variants in TMEM163 cause a hypomyelinating leukodystrophy and uncover a novel role for zinc homeostasis in oligodendrocyte development and myelin formation.
Collapse
Affiliation(s)
- Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guillermo Rodriguez Bey
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bruce Nmezi
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fang Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Talia Oranburg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ana S A Cohen
- Genomic Medicine Center, Children’s Mercy, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy, Kansas City, MO 64108, USA
- School of Medicine Serves, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Keith A Coffman
- Division of Neurology, Movement Disorders Clinic, Tourette Syndrome Center of Excellence, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Maya R Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam University Medical Centers, VU University Amsterdam, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Myrthe T Flohil
- Department of Neurology, Noordwest ziekenhuisgroep, Wilhelminalaan Alkmaar, The Netherlands
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR Hospitals, Hyderabad, India
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics Laboratories, Houston, Texas, USA
| | - Alejandro Iglesias
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Nicole I Wolf
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma’s Children’s Hospital, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Quasar Saleem Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Zinc and Zinc Transporters in Dermatology. Int J Mol Sci 2022; 23:ijms232416165. [PMID: 36555806 PMCID: PMC9785331 DOI: 10.3390/ijms232416165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc is an important trace mineral in the human body and a daily intake of zinc is required to maintain a healthy status. Over the past decades, zinc has been used in formulating topical and systemic therapies for various skin disorders owing to its wound healing and antimicrobial properties. Zinc transporters play a major role in maintaining the integrity of the integumentary system by controlling zinc homeostasis within dermal layers. Mutations and abnormal function of zinc-transporting proteins can lead to disease development, such as spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and acrodermatitis enteropathica (AE) which can be fatal if left untreated. This review discusses the layers of the skin, the importance of zinc and zinc transporters in each layer, and the various skin disorders caused by zinc deficiency, in addition to zinc-containing compounds used for treating different skin disorders and skin protection.
Collapse
|
8
|
Escobar A, Styrpejko DJ, Ali S, Cuajungco MP. Transmembrane 163 (TMEM163) protein interacts with specific mammalian SLC30 zinc efflux transporter family members. Biochem Biophys Rep 2022; 32:101362. [PMID: 36204728 PMCID: PMC9530847 DOI: 10.1016/j.bbrep.2022.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported that TMEM163 is a zinc efflux transporter that likely belongs to the mammalian solute carrier 30 (Slc30/ZnT) subfamily of the cation diffusion facilitator (CDF) protein superfamily. We hypothesized that human TMEM163 forms functional heterodimers with certain ZNT proteins based on their overlapping subcellular localization with TMEM163 and previous reports that some ZNT monomers interact with each other. In this study, we heterologously expressed individual constructs with a unique peptide tag containing TMEM163, ZNT1, ZNT2, ZNT3, and ZNT4 (negative control) or co-expressed TMEM163 with each ZNT in cultured cells for co-immunoprecipitation (co-IP) experiments. We also co-expressed TMEM163 with two different peptide tags as a positive co-IP control. Western blot analyses revealed that TMEM163 dimerizes with itself but that it also heterodimerizes with ZNT1, ZNT2, ZNT3, and ZNT4 proteins. Confocal microscopy revealed that TMEM163 and ZNT proteins partially co-localize in cells, suggesting that they exist as homodimers and heterodimers in their respective subcellular sites. Functional zinc flux assays using Fluozin-3 and Newport Green dyes show that TMEM163/ZNT heterodimers exhibit similar efflux function as TMEM163 homodimers. Cell surface biotinylation revealed that the plasma membrane localization of TMEM163 is not markedly influenced by ZNT co-expression. Overall, our results show that the interaction between TMEM163 and distinct ZNT proteins is physiologically relevant and that their heterodimerization may serve to increase the functional diversity of zinc effluxers within specific tissues or cell types. TMEM163 protein heterodimerizes with ZNT1, ZNT2, ZNT3 and ZNT4 zinc efflux transporters. Partial co-localization of TMEM163 and ZNT proteins in cells suggests distinct roles as homodimers and heterodimers. Zinc efflux activity of TMEM163 or ZNT protein homodimers did not differ from their TMEM163/ZNT heterodimer counterparts. TMEM163/ZNT heterodimerization attests to the role of TMEM163 as a bona fide SLC30 protein family member.
Collapse
Affiliation(s)
| | | | - Saima Ali
- Department of Biological Science, USA
| | - Math P. Cuajungco
- Department of Biological Science, USA,Center for Applied Biotechnology Studies, California State University Fullerton, CA, 92831, USA,Corresponding author. Department of Biological Science, California State University Fullerton, 800 North State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
9
|
Zhao Y, Zhang K, Pan H, Wang Y, Zhou X, Xiang Y, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Tang B, Liu Z. Genetic Analysis of Six Transmembrane Protein Family Genes in Parkinson's Disease in a Large Chinese Cohort. Front Aging Neurosci 2022; 14:889057. [PMID: 35860667 PMCID: PMC9289399 DOI: 10.3389/fnagi.2022.889057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Parkinson's disease (PD) is a neurodegenerative disorder with the manifestation of motor symptoms and non-motor symptoms. Previous studies have indicated the role of several transmembrane (TMEM) protein family genes in PD pathogenesis. Materials and Methods In order to better investigate the genetic role of PD-related TMEM protein family genes in PD, including TMEM230, TMEM59, TMEM108, TMEM163, TMEM175, and TMEM229B, 1,917 sporadic early onset PD (sEOPD) or familial PD (FPD) patients and 1,652 healthy controls were analyzed by whole-exome sequencing (WES) while 1,962 sporadic late-onset PD (sLOPD) and 1,279 healthy controls were analyzed by whole-genome sequencing (WGS). Rare and common variants for each gene were included in the analysis. Results One hundred rare damaging or loss of function variants of six genes were found at the threshold of MAF < 0.1%. Three rare Dmis variants of TMEM230 were specifically identified in PD. Rare missense variants of TMEM59 were statistically significantly associated with PD in the WES cohort, indicating the role of TMEM59 in FPD and sEOPD. Rare missense variants of TMEM108 were suggestively associated with PD in the WGS cohort, indicating the potential role of TMEM108 in sLOPD. The rare variant of the other three genes and common variants of six genes were not significantly associated with PD. Conclusion We performed a large case-control study to systematically investigate the role of several PD-related TMEM protein family genes in PD. We identified three PD-specific variants in TMEM230, the significant association of TMEM59 with FPD, and sEOPD and the suggestive association of TMEM108 with sLOPD.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kailin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
10
|
Yan H, Yang S, Hou Y, Ali S, Escobar A, Gao K, Duan R, Kubisiak T, Wang J, Zhang Y, Xiao J, Jiang Y, Zhang T, Wu Y, Burmeister M, Wang Q, Cuajungco MP, Wang J. Functional Study of TMEM163 Gene Variants Associated with Hypomyelination Leukodystrophy. Cells 2022; 11:cells11081285. [PMID: 35455965 PMCID: PMC9031525 DOI: 10.3390/cells11081285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) are a rare group of heterogeneously genetic disorders characterized by persistent deficit of myelin observed on magnetic resonance imaging (MRI). To identify a new disease-associated gene of HLD, trio-based whole exome sequencing was performed for unexplained patients with HLD. Functional studies were performed to confirm the phenotypic effect of candidate protein variants. Two de novo heterozygous variants, c.227T>G p.(L76R) or c.227T>C p.(L76P) in TMEM163 were identified in two unrelated HLD patients. TMEM163 protein is a zinc efflux transporter localized within the plasma membrane, lysosomes, early endosomes, and other vesicular compartments. It has not been associated with hypomyelination. Functional zinc flux assays in HeLa cells stably-expressing TMEM163 protein variants, L76R and L76P, revealed distinct attenuation or enhancement of zinc efflux, respectively. Experiments using a zebrafish model with knockdown of tmem163a and tmem163b (morphants) showed that loss of tmem163 causes dysplasia of the larvae, locomotor disability and myelin deficit. Expression of human wild type TMEM163 mRNAs in morphants rescues the phenotype, while the TMEM163 L76P and L76R mutants aggravated the condition. Moreover, poor proliferation, elevated apoptosis of oligodendrocytes, and reduced oligodendrocytes and neurons were also observed in zebrafish morphants. Our findings suggest an unappreciated role for TMEM163 protein in myelin development and add TMEM163 to a growing list of genes associated with hypomyelination leukodystrophy.
Collapse
Affiliation(s)
- Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Joint International Research Center of Translational and Clinical Research, Beijing 100191, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
| | - Shuyan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; (S.Y.); (T.Z.)
| | - Yiming Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; (Y.H.); (Q.W.)
| | - Saima Ali
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
| | - Adrian Escobar
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Ruoyu Duan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Thomas Kubisiak
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
| | - Junyu Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Yu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing 100034, China;
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; (S.Y.); (T.Z.)
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (T.K.); (M.B.)
- Departments of Computational Medicine & Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; (Y.H.); (Q.W.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Math P. Cuajungco
- Department of Biological Science, California State University, Fullerton, CA 92831, USA; (S.A.); (A.E.)
- Center for Applied Biotechnology Studies, California State University, Fullerton, CA 92831, USA
- Correspondence: (M.P.C.); (J.W.)
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China; (H.Y.); (K.G.); (R.D.); (J.W.); (Y.Z.); (Y.J.); (Y.W.)
- Joint International Research Center of Translational and Clinical Research, Beijing 100191, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
- Correspondence: (M.P.C.); (J.W.)
| |
Collapse
|
11
|
Ustianowski P, Malinowski D, Safranow K, Dziedziejko V, Tarnowski M, Pawlik A. PPARG, TMEM163, UBE2E2 and WFS1 Gene Polymorphisms Are Not Significant Risk Factors for Gestational Diabetes in the Polish Population. J Pers Med 2022; 12:jpm12020243. [PMID: 35207731 PMCID: PMC8878167 DOI: 10.3390/jpm12020243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common disorder that occurs in pregnant women, leading to many maternal and neonatal complications. The pathogenesis of GDM is complex and includes risk factors, such as: age, obesity, and family history of diabetes. Studies have shown that genetic factors also play a role in the pathogenesis of GDM. The present study investigated whether polymorphisms in the PPARG (rs1801282), TMEM163 (rs6723108 and rs998451), UBE2E2 (rs6780569), and WFS1 (rs4689388) genes are risk factors for the development of GDM and whether they affect selected clinical parameters in women with GDM. This study included 204 pregnant women with GDM and 207 pregnant women with normal glucose tolerance (NGT). The diagnosis of GDM was based on a 75 g oral glucose tolerance test (OGTT) at 24–28 weeks gestation, according to the International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. There were no statistically significant differences in the distribution of polymorphisms studied between women with GDM and pregnant women with normal carbohydrate tolerance, which suggests that these polymorphisms are not risk factors for GDM. We also examined the associations between studied gene polymorphisms and clinical parameters: fasting glucose, daily insulin requirement, body mass before pregnancy, body mass at birth, body mass increase during pregnancy, BMI before pregnancy, BMI at birth, BMI increase during pregnancy, new-born body mass, and APGAR score in women with GDM. We observed lower BMI values before pregnancy and at birth in women with PPARG rs17036160 TT genotype. The results of this study suggest that the PPARG (rs1801282), TMEM163 (rs6723108 and rs998451), UBE2E2 (rs6780569), and WFS1 (rs4689388) gene polymorphisms are not significant risk factors for GDM development in the Polish population and do not affect the clinical parameters in women with GDM; only rs1801282 of the PPARG gene may influence BMI values in women with GDM.
Collapse
Affiliation(s)
- Przemysław Ustianowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (V.D.); (K.S.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|