1
|
Khalid H, Shityakov S. Immunoinformatics-driven design and computational analysis of a multiepitope vaccine targeting uropathogenic Escherichia coli. In Silico Pharmacol 2024; 13:2. [PMID: 39717385 PMCID: PMC11663213 DOI: 10.1007/s40203-024-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024] Open
Abstract
Urinary tract infections (UTIs), largely caused by uropathogenic Escherichia coli (UPEC), are increasingly resistant to antibiotics and frequently recur. Using immunoinformatics, we designed a multiepitope peptide vaccine targeting UPEC virulence factors, including iron acquisition systems and adhesins. The construct features 12 cytotoxic T lymphocyte epitopes, six helper T lymphocyte epitopes, and six B-cell epitopes,and isoptimized for high antigenicity, immunogenicity, nontoxic, and low allergenic potential. Molecular docking and 0.4-µs molecular dynamics simulations revealed the molecular mechanism of theinteraction of the vaccine with Toll-like receptor 4 and a favorable binding energy of - 41.83 kcal/mol using an implicit solvation model. These promising in silico results suggest the potential efficacy of the vaccine in preventing UPEC infections and underscore immunoinformatics as a powerful tool for addressing antibiotic-resistant UTI pathogens. Graphical Abstract Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00288-z.
Collapse
Affiliation(s)
- Hina Khalid
- College Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049 China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation
| |
Collapse
|
2
|
Farahani M, Robati RM, Rezaei-Tavirani M, Fateminasab F, Shityakov S, Rahmati Roodsari M, Razzaghi Z, Zamanian Azodi M, Saghari S. Integrating protein interaction and pathway crosstalk network reveals a promising therapeutic approach for psoriasis through apoptosis induction. Sci Rep 2024; 14:22103. [PMID: 39333640 PMCID: PMC11436859 DOI: 10.1038/s41598-024-73746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Psoriasis is a complex inflammatory skin disease manifested by altered proliferation and differentiation of keratinocytes with dysfunctional apoptosis. This study aimed to identify regulatory factors and comprehend the underlying mechanisms of inefficient apoptosis to open up promising therapeutic approaches. Incorporating human protein interactions, apoptosis proteins, and physical relationships of psoriasis-apoptosis proteins helped us to generate a psoriasis-apoptosis interaction (SAI) network. Subsequently, topological and functional analyses of the SAI network revealed effective proteins, functional modules, hub motifs, dysregulated pathways and transcriptional gene regulatory factors. Network pharmacology, molecular docking and molecular dynamics simulation methods identified the potential drug-target interactions. RELA, MAPK1, MAPK3, MMP9, IL1B, AKT1 and STAT1 were revealed as effective proteins. The MAPK1-MAPK3-RELA motif was identified as a hub regulator in the crosstalk between 41 pathways. Among all pathways, "lipid and atherosclerosis" was found to be the predominant pathway. Acetylcysteine, arsenic-trioxide, β-elemene, bortezomib and curcumin were identified as potential drugs to inhibit pathway crosstalk. Experimental verifications were performed using the literature search, GSE13355 and GSE14905 microarray datasets. Drug-protein-pathway interactions associated with apoptosis were deciphered. These findings highlight the role of hub motif-mediated pathway-pathway crosstalk associated with apoptosis in the complexity of psoriasis and suggest crosstalk inhibition as an effective therapeutic approach.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| | - Mohammad Rahmati Roodsari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saviz Saghari
- Department of Internal Medicine, West Anaheim Medical Center, Anaheim, CA, USA
| |
Collapse
|
3
|
Zhao Y, Xu S, Hao W, Fu Y. Morin reverses P-glycoprotein-mediated multidrug-resistance in KBChR-8-5 cancer cell lines. Cell Biochem Funct 2024; 42:e4083. [PMID: 38938150 DOI: 10.1002/cbf.4083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Multidrug resistance (MDR) during clinical chemotherapy for cancer has been considered a major obstacle to treatment efficacy. The involvement of adenosine triphosphate-binding cassette (ABC) transporters in the MDR mechanism significantly reduces the efficacy of chemotherapeutics. This study investigates the potential of morin, a dietary bioflavonoid, to overcome colchicine resistance in KBChR-8-5 MDR cells. The P-gp inhibitory activity by morin was measured by calcein-AM drug efflux assay. Western blot analysis was employed to evaluate P-gp messenger RNA and protein expressions following morin treatment. Flow cytometry analysis and acridine orange/ethidium bromide fluorescence staining were utilised to investigate the induction of apoptosis and cell cycle arrest upon treatment with morin and paclitaxel in combination. Additionally, polymerase chain reaction (PCR) array analysis was conducted to study the gene expression profiles related to MDR, apoptosis and cell cycle arrest during treatment with morin, paclitaxel or their combination. Morin exhibited a strong binding interaction with human P-gp. This was corroborated by drug efflux assays, which showed a reduction in P-gp efflux function with increasing morin concentration. Furthermore, morin and paclitaxel combination potentiated the induction of apoptosis and G2/M phase cell cycle arrest. Morin treatment significantly downregulated the gene expression of ABCB1 and P-gp membrane expressions in MDR cells. Additionally, PCR array gene expression analysis revealed that the combination treatment with morin and paclitaxel upregulated proapoptotic and cell cycle arrest genes while downregulating ABCB1 gene and antiapoptotic genes. Thus, morin effectively reversed paclitaxel resistance in KBChR-8-5 drug-resistant cancer cells and concluded that morin resensitized the paclitaxel resistance in KBChR8-5 drug-resistant cancer cells.
Collapse
MESH Headings
- Humans
- Flavonoids/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Apoptosis/drug effects
- Paclitaxel/pharmacology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Cell Line, Tumor
- Cell Cycle Checkpoints/drug effects
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Flavones
Collapse
Affiliation(s)
- Yan Zhao
- Department of Stomatology, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Sanhui Xu
- Department of Clinical Laboratory, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Weiting Hao
- Department of Stomatology, Xingtai People's Hospital, Xingtai, Hebei Province, China
| | - Yongqing Fu
- Department of Clinical Laboratory, Xingtai People's Hospital, Xingtai, Hebei Province, China
| |
Collapse
|
4
|
Shafique I, Rafiq M, Rana NF, Menaa F, Almalki F, Aljuaid A, Alnasser SM, Alotaibi AS, Masood MBE, Tanweer T. Computational evaluation of efflux pump homologues and lignans as potent inhibitors against multidrug-resistant Salmonella typhi. PLoS One 2024; 19:e0303285. [PMID: 38917154 PMCID: PMC11198855 DOI: 10.1371/journal.pone.0303285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024] Open
Abstract
Typhoid fever, caused by Salmonella enterica serovar typhi, presents a substantial global health threat, particularly in regions with limited healthcare infrastructure. The rise of multidrug-resistant strains of S. typhi exacerbates this challenge, severely compromising conventional treatment efficacy due to over activity of efflux pumps. In our study, a comprehensive exploration of two fundamental aspects to combat MDR in S. typhi is carried out; i.e. employing advanced bioinformatics analyses and AlphaFold AI, We successfully identified and characterised a putative homologue, ABC-TPA, reminiscent of the P-glycoprotein (P-gp) known for its role in multidrug resistance in diverse pathogens. This discovery provides a critical foundation for understanding the potential mechanisms driving antibiotic resistance in S. typhi. Furthermore, employing computational methodologies, We meticulously assessed the potential of lignans, specifically Schisandrin A, B, and C, as promising Efflux Pump Inhibitors (EPIs) against the identified P-gp homologue in S. typhi. Noteworthy findings revealed robust binding interactions of Schisandrin A and B with the target protein, indicating substantial inhibitory capabilities. In contrast, Schisandrin C exhibited instability, showing varied effectiveness among the evaluated lignans. Pharmacokinetics and toxicity predictions underscored the favourable attributes of Schisandrin A, including prolonged action duration. Furthermore, high systemic stability and demanished toxicity profile of SA and SB present their therapeutic efficacy against MDR. This comprehensive investigation not only elucidates potential therapeutic strategies against MDR strains of S. typhi but also highlights the relevance of computational approaches in identifying and evaluating promising candidates. These findings lay a robust foundation for future empirical studies to address the formidable challenges antibiotic resistance poses in this clinically significant infectious diseases.
Collapse
Affiliation(s)
- Iqra Shafique
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| | - Mehak Rafiq
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science & Technology, Islamabad, Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| | - Farid Menaa
- Department of Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA, United States of America
| | - Fatemah Almalki
- Department of Biology, College of Science and Humanities, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | - Alya Aljuaid
- Department of Biology, College of Science and Humanities, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | | | - Amenah S. Alotaibi
- Department of Biology, Genomic & Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Madahiah Bint E. Masood
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Science & Technology, Islamabad, Pakistan
| | - Tahreem Tanweer
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
El-Say KM, Megahed MA, Abdalla A, El-Sawy HS, Afify H, Ramadan AA, Ahmed TA. P-gp inhibition and enhanced oral bioavailability of amikacin Sulfate: A novel approach using Thiolated Chito-PEGylated Lipidic Hybrids. Int J Pharm 2024; 658:124200. [PMID: 38710298 DOI: 10.1016/j.ijpharm.2024.124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
This study aimed to develop oral lipidic hybrids of amikacin sulfate (AMK), incorporating thiolated chitosan as a P-glycoprotein (P-gp) inhibitor to enhance intestinal absorptivity and bioavailability. Three formulations were designed: PEGylated Liposomes, Chitosan-functionalized PEGylated (Chito-PEGylated) Lipidic Hybrids, and Thiolated Chito-PEGylated Lipidic Hybrids. The physical characteristics of nanovesicles were assessed. Ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies were conducted to evaluate the formulations' potential to enhance AMK intestinal permeability. In-vivo pharmacokinetic studies in rats and histological/biochemical investigations assessed the safety profile and oral bioavailability. The AMK-loaded Thiolated Chito-PEGylated Lipidic Hybrids exhibited favorable physical characteristics, higher ex-vivo permeation parameters, and verified P-gp inhibition via CLSM. They demonstrated heightened oral bioavailability (68.62% absolute bioavailability) and a sufficient safety profile. Relative bioavailability was significantly higher (1556.3% and 448.79%) compared to PEGylated Liposomes and Chito-PEGylated Lipidic Hybrids, respectively, indicating remarkable oral AMK delivery with fewer doses, reduced side effects, and enhanced patient compliance.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia.
| | - Mohamed A Megahed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ahmed Abdalla
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Afaf A Ramadan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11765, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Alsulaymanyah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Saleem M, Mazhar Fareed M, Salman Akbar Saani M, Shityakov S. Network pharmacology and multitarget analysis of Nigella sativa in the management of diabetes and obesity: a computational study. J Biomol Struct Dyn 2024; 42:4800-4816. [PMID: 37350443 DOI: 10.1080/07391102.2023.2222837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
Obesity and diabetes are commonly associated with one another and represent a significant global health issue, with a recent surge in disease incidence. Nigella sativa, also known as black cumin, is believed to possess several health benefits, including anti-diabetic, anticancer, antioxidant, antimicrobial, and anti-obesity properties. In this study, we aimed to identify the active compounds derived from N. sativa, which can potentially inhibit key protein targets and signaling pathways associated with diabesity treatment. We employed an exhaustive in silico search, which led to the identification of 22 potential compounds. Out of these, only five hits were found to be non-toxic, including Arabic and ascorbic acids, dihydrocodeine, catechin, and kaempferol. Our analysis revealed that these hits were associated with genes such as AKT1, IL6, SRC, and EGFR. Finally, we conducted molecular docking and molecular dynamics simulations, which identified kaempferol as the best binder for AKT1 in comparison to the reference molecule. Overall, our in silico integrated pipeline provides a useful approach to identify non-toxic phytocompounds as promising drug candidates to treat diabetes and obesity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntaha Saleem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Mazhar Fareed
- Department of Computer Science, School of Science and Engineering, Università degli studi di Verona, Verona, Italy
- Department of Biotechnology, Applied Bioinformatics Group, Università degli studi di Verona, Verona, Italy
| | | | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
7
|
Schafer M, Brich N, Byska J, Marques SM, Bednar D, Thiel P, Kozlikova B, Krone M. InVADo: Interactive Visual Analysis of Molecular Docking Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1984-1997. [PMID: 38019636 DOI: 10.1109/tvcg.2023.3337642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Molecular docking is a key technique in various fields like structural biology, medicinal chemistry, and biotechnology. It is widely used for virtual screening during drug discovery, computer-assisted drug design, and protein engineering. A general molecular docking process consists of the target and ligand selection, their preparation, and the docking process itself, followed by the evaluation of the results. However, the most commonly used docking software provides no or very basic evaluation possibilities. Scripting and external molecular viewers are often used, which are not designed for an efficient analysis of docking results. Therefore, we developed InVADo, a comprehensive interactive visual analysis tool for large docking data. It consists of multiple linked 2D and 3D views. It filters and spatially clusters the data, and enriches it with post-docking analysis results of protein-ligand interactions and functional groups, to enable well-founded decision-making. In an exemplary case study, domain experts confirmed that InVADo facilitates and accelerates the analysis workflow. They rated it as a convenient, comprehensive, and feature-rich tool, especially useful for virtual screening.
Collapse
|
8
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
9
|
Manoharan JP, Palanisamy H, Vidyalakshmi S. Overcoming multi drug resistance mediated by ABC transporters by a novel acetogenin- annonacin from Annona muricata L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117598. [PMID: 38113989 DOI: 10.1016/j.jep.2023.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-Drug Resistance (MDR), mediated by P-glycoprotein (P-gp) is one of the barriers to successful chemotherapy in colon cancer patients. Annona muricata L. (A.muricata), commonly known as soursop/Graviola, is a medicinal plant that has been traditionally used in treating diverse diseases including cancer. Phytochemicals of A.muricata (Annonaceous Acetogenins-AGEs) have been well-reported for their anti-cancer effects on various cancers. AIM OF THE STUDY The study aimed to examine the effect of AGEs in reversing MDR in colorectal cancer cells. METHODS Based on molecular docking and molecular dynamic simulation, the stability of annonacin upon P-gp was investigated. Further in vitro studies were carried in oxaliplatin-resistant human colon cancer cells (SW480R) to study the biological effect of annonacin, in reversing drug resistance in these cells. RESULTS Molecular docking and simulation studies have indicated that annonacin stably interacted at the drug binding site of P-gp. In vitro analysis showed that annonacin was able to significantly reduce the expression of P-gp by 2.56 folds. It also induced apoptosis in the drug-resistant colon cancer cells. Moreover, the intracellular accumulation of P-gp substrate (calcein-AM) was observed to increase in resistant cells upon treatment with annonacin. CONCLUSION Our findings suggest that annonacin could inhibit the efflux of chemotherapeutic drugs mediated by P-gp and thereby help in reversing MDR in colon cancer cells. Further in vivo studies are required to decipher the underlying mechanism of annonacin in treating MDR cancers.
Collapse
Affiliation(s)
- Jeevitha Priya Manoharan
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India; Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India.
| | - Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu, India.
| | | |
Collapse
|
10
|
Lakra DS, B P, N D, T D, G K, N RP. Chemosensitizing potential of andrographolide in P-glycoprotein overexpressing multidrug-resistant cancer cell lines. Nat Prod Res 2024; 38:941-946. [PMID: 37144420 DOI: 10.1080/14786419.2023.2208261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
The P-glycoprotein (P-gp) plays a major role in the efflux of chemotherapeutic drugs and significantly limits chemotherapy efficacy. Chemosensitizers augment the therapeutic effects of anticancer agents by overcoming drug resistance mechanisms. In this study, the chemosensitizing property of andrographolide (Andro) in P-gp overexpressing multidrug-resistant (MDR) colchicine-selected KBChR 8-5 cells was evaluated. Molecular docking studies showed Andro exhibits higher binding interaction with P-gp than the other two ABC-transporters studied. Further, it inhibits P-gp transport function in a concentration dependant manner in the colchicine-selected KBChR 8-5 cells. Moreover, Andro downregulates P-gp overexpression via NF-κB signaling in these MDR cell lines. MTT-based cell-based assay illustrates that Andro treatment augments the PTX effect in the KBChR 8-5 cells. Further, the Andro plus PTX combination showed enhanced apoptotic cell death in KBChR 8-5 cells compared with PTX alone treatment. Therefore, the results showed that Andro enhances PTX therapeutic effect in the drug-resistant KBChR 8-5 cells.
Collapse
Affiliation(s)
- Deepa Swati Lakra
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pradhapsingh B
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Deepika N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Dhanalakshmi T
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - Kanimozhi G
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
11
|
Kumar A, Kalra S, Jangid K, Jaitak V. Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: an in-silico approach. J Biomol Struct Dyn 2023; 41:7627-7639. [PMID: 36120941 DOI: 10.1080/07391102.2022.2123390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become a leading cause of mortality due to non-communicable diseases after cardiovascular disease worldwide and is increasing day by day at a daunting pace. According to an estimate by 2040 there will be 28.4 million cancer cases. Occurrence of multidrug resistance has further worsened the scenario of available cancer treatment. Among different mechanisms of multidrug resistance efflux of xenobiotics by ABC transporter is of prime importance. P-glycoprotein (P-gp) is the major factor behind occurrence of multidrug resistance due to its wide distribution and invariably big binding cavity. Various generations of chemical inhibitors for P-gp have been designed and tested are not devoid of major side effects. Thus, in present study flavonoids a major class of natural compounds was virtually screened in order to find molecules which can be used as selective P-gp inhibitors to be used along with chemotherapeutics. After screening 4275 molecules from different classes of flavonoids i.e. flavan, flavanol, flavonone, flavone, anthocyanins, and isoflavone, through Glide docking top ten hit molecules were selected based on their binding affinity, binding energy calculation and pharmacokinetic properties. All the hit molecules were found to have docking score within the range of -11.202 to -9.699 kcal/mol showing very strong interaction with the amino acid residues of binding pocket. Whereas, dock score of standard P-gp inhibitor verapamil was -4.984 kcal/mol. The ligand and protein complex were found to be quite stable while run through molecular dynamics simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Sourav Kalra
- School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kailash Jangid
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
12
|
Gandla K, Islam F, Zehravi M, Karunakaran A, Sharma I, Haque MA, Kumar S, Pratyush K, Dhawale SA, Nainu F, Khan SL, Islam MR, Al-Mugren KS, Siddiqui FA, Emran TB, Khandaker MU. Natural polymers as potential P-glycoprotein inhibitors: Pre-ADMET profile and computational analysis as a proof of concept to fight multidrug resistance in cancer. Heliyon 2023; 9:e19454. [PMID: 37662819 PMCID: PMC10472248 DOI: 10.1016/j.heliyon.2023.e19454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
P-glycoprotein (P-gp) is known as the "multidrug resistance protein" because it contributes to tumor resistance to several different classes of anticancer drugs. The effectiveness of such polymers in treating cancer and delivering drugs has been shown in a wide range of in vitro and in vivo experiments. The primary objective of the present study was to investigate the inhibitory effects of several naturally occurring polymers on P-gp efflux, as it is known that P-gp inhibition can impede the elimination of medications. The objective of our study is to identify polymers that possess the potential to inhibit P-gp, a protein involved in drug resistance, with the aim of enhancing the effectiveness of anticancer drug formulations. The ADMET profile of all the selected polymers (Agarose, Alginate, Carrageenan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid) has been studied, and binding affinities were investigated through a computational approach using the recently released crystal structure of P-gp with PDB ID: 7O9W. The advanced computational study was also done with the help of molecular dynamics simulation. The aim of the present study is to overcome MDR resulting from the activity of P-gp by using such polymers that can inhibit P-gp when used in formulations. The docking scores of native ligand, Agarose, Alginate, Carrageenan, Chitosan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid were found to be -10.7, -8.5, -6.6, -8.7, -8.6, -24.5, -6.7, -8.3, and -7.9, respectively. It was observed that, Cyclodextrin possess multiple properties in drug delivery science and here also demonstrated excellent binding affinity. We propose that drug efflux-related MDR may be prevented by the use of Agarose, Carregeenan, Chitosan, Cyclodextrin, Hyaluronic acid, and/or Polysialic acid in the administration of anticancer drugs.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Himayath Nagar, Hyderabad 500075, Telangana, India
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Anandakumar Karunakaran
- Department of Pharmaceutical Analysis, Vivekanandha Pharmacy College for Women, Beerachipalayam, Sankari West, Sankari, Salem, Tamil Nadu, - 637 303, India
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad, India
| | - Sanjay Kumar
- Department of Pharmacognosy, Laureate Institute of Pharmacy, VPO Kathog, Dehra, Kangra, Himachal Pradesh 176031, India
| | - Kumar Pratyush
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Sachin A. Dhawale
- Shreeyash Institute of Pharmaceutical Education and Research Aurangabad, 431 005, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Kholoud Saad Al-Mugren
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428 Riyadh 11671, Saudi Arabia
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
13
|
Rajaei N, Rahgouy G, Panahi N, Razzaghi-Asl N. Bioinformatic analysis of highly consumed phytochemicals as P-gp binders to overcome drug-resistance. Res Pharm Sci 2023; 18:505-516. [PMID: 37842517 PMCID: PMC10568960 DOI: 10.4103/1735-5362.383706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose P-glycoprotein (P-gp) is an adenosine triphosphate (ATP)-dependent membrane efflux pump for protecting cells against xenobiotic compounds. Unfortunately, overexpressed P-gp in neoplastic cells prevents cell entry of numerous chemotherapeutic agents leading to multidrug resistance (MDR). MDR cells may be re-sensitized to chemotherapeutic drugs via P-gp inhibition/modulation. Side effects of synthetic P-gp inhibitors encouraged the development of natural products. Experimental approach Molecular docking and density functional theory (DFT) calculations were used as fast and accurate computational methods to explore a structure binding relationship of some dietary phytochemicals inside distinctive P-gp binding sites (modulatory/inhibitory). For this purpose, top-scored docked conformations were subjected to per-residue energy decomposition analysis in the B3LYP level of theory with a 6-31g (d, p) basis set by Gaussian98 package. Findings/Results Consecutive application of computational techniques revealed binding modes/affinities of nutritive phytochemicals within dominant binding sites of P-gp. Blind docking scores for best-ranked compounds were superior to verapamil and rhodamine-123. Pairwise amino acid decomposition of superior docked conformations revealed Tyr303 as an important P-gp binding residue. DFT-based induced polarization analysis revealed major electrostatic fluctuations at the atomistic level and confirmed larger effects for amino acids with energy-favored binding interactions. Conformational analysis exhibited that auraptene and 7,4',7'',4'''-tetra-O-methylamentoflavone might not necessarily interact to P-gp binding sites through minimum energy conformations. Conclusion and implications Although there are still many hurdles to overcome, obtained results may propose a few nutritive phytochemicals as potential P-gp binding agents. Moreover; top-scored derivatives may have the chance to exhibit tumor chemo-sensitizing effects.
Collapse
Affiliation(s)
- Narges Rajaei
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghazaleh Rahgouy
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Panahi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
14
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
15
|
Dutta K, Shityakov S, Maruyama F. DSF inactivator RpfB homologous FadD upregulated in Bradyrhizobium japonicum under iron limiting conditions. Sci Rep 2023; 13:8701. [PMID: 37248242 DOI: 10.1038/s41598-023-35487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Phytopathogenic bacteria Xanthomonas campestris pv. campestris (Xcc) causes black rot and other plant diseases. Xcc senses diffusible signal factor (DSF) as a quorum-sensing (QS) signal that mediates mainly iron uptake and virulence. RpfB deactivates DSF in this DSF-QS circuit. We examined differential gene expression profiles of Bradyrhizobium japonicum under low versus high iron conditions and found that fadD and irr were upregulated under low iron (log2 fold change 0.825 and 1.716, respectively). In addition to having similar protein folding patterns and functional domain similarities, FadD shared 58% sequence similarity with RpfB of Xcc. The RpfB-DSF and FadD-DSF complexes had SWISSDock molecular docking scores of - 8.88 kcal/mol and - 9.85 kcal/mol, respectively, and the 100 ns molecular dynamics simulation results were in accord with the docking results. However, significant differences were found between the binding energies of FadD-DSF and RpfB-DSF, indicating possible FadD-dependent DSF turnover. The protein-protein interaction network showed that FadD connected indirectly with ABC transporter permease (ABCtp), which was also upregulated (log2 fold change 5.485). We speculate that the low iron condition may be a mimetic environmental stimulus for fadD upregulation in B. japonicum to deactivate DSF, inhibit iron uptake and virulence of DSF-producing neighbors. This finding provides a new option of using B. japonicum or a genetically improved B. japonicum as a potential biocontrol agent against Xcc, with the added benefit of plant growth-promoting properties.
Collapse
Affiliation(s)
- Kunal Dutta
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
16
|
Yin Y, Xin Y, Zhang F, An D, Fan H, Qin M, Xia J, Xi T, Xiong J. Overcoming ABCB1-mediated multidrug resistance by transcription factor BHLHE40. Neoplasia 2023; 39:100891. [PMID: 36931039 PMCID: PMC10025992 DOI: 10.1016/j.neo.2023.100891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Multidrug resistance (MDR) hinders treatment efficacy in cancer therapy. One typical mechanism contributing to MDR is the overexpression of permeability-glycoprotein (P-gp) encoded by ATP-binding cassette subfamily B member 1 (ABCB1). Basic helix-loop-helix family member e40 (BHLHE40) is a well-known transcription factor that has pleiotropic effects including the regulation of cancer-related processes. However, whether BHLHE40 regulates MDR is still unknown. Chromatin immunoprecipitation-seq study revealed BHLHE40 occupancy in the promoter of ABCB1 gene. Adriamycin (ADM)-resistant human chronic myeloid leukemia cells (K562/A) and human breast cancer cells (MCF-7/A) were established. BHLHE40 expression was downregulated in the ADM-resistant cell lines. Overexpression of BHLHE40 resensitized resistant cells to ADM, promoted cell apoptosis in vitro and suppressed tumor growth in vivo, whereas BHLHE40 knockdown induced resistance to ADM in parental cells. Moreover, we found that BHLHE40 regulated drug resistance by directly binding to the ABCB1 promoter (-1605 to -1597) and inactivating its transcription. In consistence, the expression of BHLHE40 was negatively correlated with ABCB1 in various cancer cells, while positively with cancer cell chemosensitivity and better prognosis of patients with breast cancer. The study reveals the role of BHLHE40 as a transcriptional suppressor on the expression of ABCB1, major ABC transporter in chemoresistance. The findings extend the function of BHLHE40 in tumor progression and provides a novel mechanism for the reversal of multidrug resistance.
Collapse
Affiliation(s)
- Yongmei Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China; Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Xin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Donghao An
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Jinxin Xia
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
17
|
Bhat SA, Hasan SK, Parray ZA, Siddiqui ZI, Ansari S, Anwer A, Khan S, Amir F, Mehmankhah M, Islam A, Minuchehr Z, Kazim SN. Potential antiviral activities of chrysin against hepatitis B virus. Gut Pathog 2023; 15:11. [PMID: 36895013 PMCID: PMC9995728 DOI: 10.1186/s13099-023-00531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Interferon and nucleos(t)ide analogues are current therapeutic treatments for chronic Hepatitis B virus (HBV) infection with the limitations of a functional cure. Chrysin (5, 7-dihydroxyflavone) is a natural flavonoid, known for its antiviral and hepatoprotective activities. However, its anti-HBV activity is unexplored. METHODS In the present study, the anti-hepatitis B activity of chrysin was investigated using the in vitro experimental cell culture model, HepG2 cells. In silico studies were performed where chrysin and lamivudine (used here as a positive control) were docked with high mobility group box 1 protein (HMGB1). For the in vitro studies, wild type HBV genome construct (pHBV 1.3X) was transiently transfected in HepG2. In culture supernatant samples, HBV surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg) were measured by enzyme-linked immunosorbent assay (ELISA). Secreted HBV DNA and intracellular covalently closed circular DNA (cccDNA) were measured by SYBR green real-time PCR. The 3D crystal structure of HMGB1 (1AAB) protein was developed and docked with the chrysin and lamivudine. In silico drug-likeness, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of finest ligands were performed by using SwissADME and admetSAR web servers. RESULTS Data showed that chrysin significantly decreases HBeAg, HBsAg secretion, supernatant HBV DNA and cccDNA, in a dose dependent manner. The docking studies demonstrated HMGB1 as an important target for chrysin as compared to lamivudine. Chrysin revealed high binding affinity and formed a firm kissing complex with HMGB1 (∆G = - 5.7 kcal/mol), as compared to lamivudine (∆G = - 4.3 kcal/mol), which might be responsible for its antiviral activity. CONCLUSIONS The outcome of our study establishes chrysin as a new antiviral against HBV infection. However, using chrysin to treat chronic HBV disease needs further endorsement and optimization by in vivo studies in animal models.
Collapse
Affiliation(s)
- Sajad Ahmad Bhat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Syed Kazim Hasan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zaheenul Islam Siddiqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shabnam Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Fatima Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mahboubeh Mehmankhah
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zarrin Minuchehr
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
18
|
Olofinsan K, Olawale F, Karigidi K, Shityakov S, Iwaloye O. Probing the bioactive compounds of Kigelia africana as novel inhibitors of TNF-α converting enzyme using HPLC/GCMS analysis, FTIR and molecular modelling. J Biomol Struct Dyn 2023; 41:12838-12862. [PMID: 36688375 DOI: 10.1080/07391102.2023.2168758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Tumor Necrosis Factor Alpha Converting Enzyme (TACE) mediates inflammatory disorder and contributes to the pathophysiology of a variety of illnesses, such as chronic inflammation and cancer. This study identified metabolites in solvent extracts of Kigelia africana as putative TACE inhibitors due to the plant's known anti-inflammatory properties. HPLC-MS/GCMS analysis was used to characterize tentative phytochemicals from K. africana. The identified metabolites (n = 123) were docked with TACE to reveal the lead compounds. Binding free energy, ADMET prediction, molecular dynamics simulation at 100 ns, and DFT calculation were further conducted. The results revealed that K. africana contains sterol, phenols, alkaloids, terpenes and flavonoids. The FTIR shows that the extracts had peaks that correspond to the presence of different functional groups. The quantum polarized ligand docking (QPLD) analysis identified compound (n = 3) with binding affinity higher than standard compound IK-682. The hits also had modest ADMET profiles, interacted with essential residues within TACE binding pockets, and formed stable complexes with the protein. The 100 ns MD simulation shows that the compounds formed fairly stable interactions and complex with the protein as evidenced through RMSF, RMSD and MM-GBA results. The HOMO/LUMO, global descriptive molecular electrostatic potential Fukui function aid in the identification of the compounds' atomic sites prone to electrophilic/neutrophilic attacks, and non-covalent interactions. This study suggests that K. africana's bioactive compounds are capable of mitigating inflammation by inhibiting TACE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Femi Olawale
- Department of Biochemistry, University of Lagos, Lagos, Nigeria
- Department of Biochemistry, School of Life Science, University of KwaZulu Natal, Durban, South Africa
| | - Kayode Karigidi
- Department of Biochemistry, Olusegun Agagu University of Science and Technology, Igbanran, Nigeria
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Nigeria
- Teady Bioscience Research Laboratory, Akure, Ondo State, Nigeria
| |
Collapse
|
19
|
Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. SEPARATIONS 2022. [DOI: 10.3390/separations9120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wild plants are used by many cultures for the treatment of diverse ailments. However, they are formed from mixtures of many wanted and unwanted phytochemicals. Thus, there is a necessity to separate the bioactive compounds responsible for their biological activity. In this study, the chemical composition as well as antimicrobial and cytotoxic activities of Echinops erinaceus Kit Tan (Asteraceae) were investigated. This led to the isolation and identification of seven compounds, two of which are new (erinaceosin C3 and erinaceol C5), in addition to methyl oleate (C1) and ethyl oleate (C2), loliolide (C4), (E)-p-coumaric acid (C6), and 5,7,3`,5`-tetrahydroxy flavanone (C7). The structures of the isolated compounds were elucidated by 1D, 2D NMR, and HR-ESI-MS. The methanol extract showed the highest antimicrobial activity among the tested extracts and fractions. The n-hexane and EtOAc extracts showed remarkable antimicrobial activity against B. subtilus, P. aeruginosa, E. coli, and C. albicans. A cytotoxicity-guided fractionation of the most bioactive chloroform extract resulted in the isolation of bioactive compounds C1/C2, which showed significant cytotoxicity against HCT-116 and CACO2 cell lines (IC50 24.95 and 19.74 µg/mL, respectively), followed by compounds C3 (IC50 82.82 and 76.70 µg/mL) and C5 (IC50 99.09 and 87.27 µg/mL), respectively. The antioxidant activity of the bioactive chloroform fractions was screened. Molecular docking was used to explain the results of the antimicrobial and anticancer activities against five protein targets, including DNA gyrase topoisomerase II, enoyl-acyl carrier protein reductase of S. aureus (FabI), dihydrofolate reductase (DHFR), β-catenin, and human P-glycoprotein (P-gp).
Collapse
|
20
|
Mora Lagares L, Novič M. Recent Advances on P-Glycoprotein (ABCB1) Transporter Modelling with In Silico Methods. Int J Mol Sci 2022; 23:ijms232314804. [PMID: 36499131 PMCID: PMC9740644 DOI: 10.3390/ijms232314804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
ABC transporters play a critical role in both drug bioavailability and toxicity, and with the discovery of the P-glycoprotein (P-gp), this became even more evident, as it plays an important role in preventing intracellular accumulation of toxic compounds. Over the past 30 years, intensive studies have been conducted to find new therapeutic molecules to reverse the phenomenon of multidrug resistance (MDR) ), that research has found is often associated with overexpression of P-gp, the most extensively studied drug efflux transporter; in MDR, therapeutic drugs are prevented from reaching their targets due to active efflux from the cell. The development of P-gp inhibitors is recognized as a good way to reverse this type of MDR, which has been the subject of extensive studies over the past few decades. Despite the progress made, no effective P-gp inhibitors to reverse multidrug resistance are yet on the market, mainly because of their toxic effects. Computational studies can accelerate this process, and in silico models such as QSAR models that predict the activity of compounds associated with P-gp (or analogous transporters) are of great value in the early stages of drug development, along with molecular modelling methods, which provide a way to explain how these molecules interact with the ABC transporter. This review highlights recent advances in computational P-gp research, spanning the last five years to 2022. Particular attention is given to the use of machine-learning approaches, drug-transporter interactions, and recent discoveries of potential P-gp inhibitors that could act as modulators of multidrug resistance.
Collapse
Affiliation(s)
- Liadys Mora Lagares
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| | - Marjana Novič
- Correspondence: (L.M.L.); (M.N.); Tel.: +386-1-4760-438 (L.M.L.); +386-1-4760-253 (M.N.)
| |
Collapse
|
21
|
Molčanová L, Treml J, Brezáni V, Maršík P, Kurhan S, Trávníček Z, Uhrin P, Šmejkal K. C-geranylated flavonoids from Paulownia tomentosa Steud. fruit as potential anti-inflammatory agents. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115509. [PMID: 35760257 DOI: 10.1016/j.jep.2022.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paulownia tomentosa Steud., a traditional Chinese medicinal plant, was used for many centuries in Chinese herbal medicine as a component of remedies for many illnesses, including inflammatory diseases. It is a rich source of phenolic compounds, mainly geranylated flavonoids, which are currently studied for their promising biological activities. AIM OF THE STUDY The study aimed to isolate minor geranylated flavanones and flavones from P. tomentosa fruit and evaluate their cytotoxicity and possible anti-inflammatory effects in a cell-based model of inflammation. MATERIALS AND METHODS Chromatographic separation of chloroform portion of the ethanolic extract of P. tomentosa fruit led to the isolation of twenty-seven flavonoids (1-27), twenty-six of them geranylated with different modifications and one non-geranylated flavanone, and two phenolic compounds. Compounds were identified using UV, IR, HRMS, NMR, and CD spectroscopy. Ten of these compounds (7-10, 12, 21, 22, 24, 25, and 27) were determined to be new flavonoid derivatives obtained from a natural source for the first time. Selected compounds were analyzed for cytotoxicity and anti-inflammatory potential to affect the activation of nuclear factor κB/activator protein 1 (NF-κB/AP-1) after lipopolysaccharide (LPS) stimulation. RESULTS All the test compounds (1-21 and 23-26) reduced the activation of NF-κB/AP-1 24 h after the addition of LPS. Eight compounds (5, 14-18, 21, and 26) were more active than prednisone, a widely used anti-inflammatory drug. However, this effect was not seen significantly on the level of TNF-α and IL-1β, which can be explained by the plurality of possible outcomes of activation of the NF-κB pathway in cells. CONCLUSIONS Results of the presented study confirmed that constituents from traditional Chinese medicinal plant P. tomentosa Steud. have promising anti-inflammatory activities and can serve as a potential source of inspiration for new anti-inflammatory medications.
Collapse
Affiliation(s)
- Lenka Molčanová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-61200, Brno, Czech Republic.
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-61200, Brno, Czech Republic.
| | - Veronika Brezáni
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-61200, Brno, Czech Republic; Veterinary Research Institute, Hudcova 296/70, CZ-62100, Brno, Czech Republic.
| | - Petr Maršík
- Department of Food Quality and Safety, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500, Prague 6-Suchdol, Czech Republic.
| | - Sebnem Kurhan
- Department of Food Quality and Safety, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500, Prague 6-Suchdol, Czech Republic.
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-77900, Olomouc, Czech Republic.
| | - Pavel Uhrin
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-61200, Brno, Czech Republic.
| |
Collapse
|
22
|
Phytol and Heptacosane Are Possible Tools to Overcome Multidrug Resistance in an In Vitro Model of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2022; 15:ph15030356. [PMID: 35337153 PMCID: PMC8952646 DOI: 10.3390/ph15030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is the ability of cancer cells to gain resistance to both conventional and novel chemotherapy agents, and remains a major problem in cancer therapy. Resistance mechanisms are multifactorial and involve more strictly pharmacological factors, such as P-glycoprotein (P-gp) and biological factors such as inhibitor of apoptosis proteins (IAPs) and the nuclear factor-kappa B (NF-κB) pathway. Possible therapeutic strategies for the treatment of acute myeloid leukemia (AML) have increased in recent years; however, drug resistance remains a problem for most pa-tients. Phytol and heptacosane are the major compounds of Euphorbia intisy essential oil (EO) which were demonstrated to inhibit P-gp in a multidrug resistant in vitro model of AML. This study investigated the mechanism by which phytol and heptacosane improve P-gp-mediated drug transport. Phytol suppresses the P-gp expression via NF-κB inhibition and does not seem to act on the efflux system. Heptacosane acts as a substrate and potent P-gp inhibitor, demonstrating the ability to retain the substrate doxorubicin inside the cell and enhancing its cytotoxic effects. Our results suggest that these compounds act as non-toxic modulators of P-gp through different mechanisms and are able to revert P-gp-mediated drug resistance in tumor cells.
Collapse
|
23
|
Ghorbanzadeh V, Aljaf KAH, Wasman HM, Pirzeh L, Azimi S, Dariushnejad H. Carvacrol Enhance Apoptotic Effect of 5-FU on MCF-7 Cell Line via inhibiting P-glycoprotein: An In-silco and In-vitro Study. Drug Res (Stuttg) 2022; 72:203-208. [PMID: 35253124 DOI: 10.1055/a-1766-5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp), is an ATP-dependent efflux transporter and overexpressed in cancer cells which is responsible for drug resistance and transportation of anticancer agents out of cells. Hence, P-gp inhibition is a promising way to reverse multi-drug resistance, finding a suitable inhibitor is essential. Carvacrol, an active compound of thyme, has been shown anticancer properties in several types of cancers but the mechanisms underlying this effect remain unclear. Here, we evaluated the inhibitory effects of carvacrol on P-gp by In-silco and in-vitro studies. METHOD carvacrol was docked against P-gp via autodock vina software to identify the potential binding of this agent. Verapamil, a well-known P-gp inhibitor, was selected as the control ligands. Cell proliferation and apoptosis were assessed using MTT assay and ELISA cell death assay, respectively. RESULTS It was observed that carvacrol exhibited appropriate affinity (-7 kcal/mol) to drug binding pocket of P-gp when compared with verapamil that showed binding affinities of -8 kcal/mol. The result of MTT assay showed a dose-dependent inhibitory effect of carvacrol and 5-FU. Data of apoptosis assay showed that combining carvacrol with 5-FU increased apoptotic effect of 5-FU 6.7-Fold rather than the control group. This ability to enhance apoptosis is more than the combination of verapamil and 5-FU (4.26-Fold). CONCLUSION These results provide important evidence that carvacrol may be a promising agent able to overcome P-gp-mediated MDR.
Collapse
Affiliation(s)
- Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Hunar Mustafa Wasman
- Medical Laboratory Science Department, University of Raparin, Kurdistan Region, Iraq
| | - Lale Pirzeh
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfort am Main, Germany
| | - Saleh Azimi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Dariushnejad
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
24
|
Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021; 12:746208. [PMID: 34912216 PMCID: PMC8666590 DOI: 10.3389/fphar.2021.746208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.
Collapse
Affiliation(s)
- Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Birui Shi
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yan Zhang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Ouyang
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Cai
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Liu
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Reduction of breast tumor drug resistance by 2,3,5,4'-tetrahydroxystilbene for exhibition synergic chemotherapeutic effect. PLoS One 2021; 16:e0260533. [PMID: 34874967 PMCID: PMC8651109 DOI: 10.1371/journal.pone.0260533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy drugs have limited efficacy in breast cancer due to multidrug resistance generated by cancer cells against anticancer drugs. In this study, we developed a novel derivative, 2, 3, 5, 4‘-tetrahydroxystilbene (TG1) by modifying 2, 3, 5, 4‘-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG). In-vivo zebrafish embryo tests revealed that TG1 showed low toxicity. The equitoxic combination of DOX or DTX with TG1 in MCF-7/Adr reduced the IC50 of DOX or DTX, and the combination index (CI) showed strong synergistic effects in the 1:3 molar ratio of DTX: TG1 and 1:5 molar ratio of DOX: TG1. Moreover, fluorescence images confirmed the cellular uptake of DOX when combined with TG1 in MCF-7/Adr. Western blotting analysis indicated downregulation of p-glycoprotein (P-gp) after MCF-7/Adr treated with TG1. In conclusion, the combined therapy of DTX or DOX and TG1 increases drug efficacy via suppressing the p-glycoprotein efflux pump. These results suggest that TG1 may have potential use for breast cancer patients, especially those with multidrug resistance.
Collapse
|
26
|
Generation of a Novel High-Affinity Antibody Binding to PCSK9 Catalytic Domain with Slow Dissociation Rate by CDR-Grafting, Alanine Scanning and Saturated Site-Directed Mutagenesis for Favorably Treating Hypercholesterolemia. Biomedicines 2021; 9:biomedicines9121783. [PMID: 34944600 PMCID: PMC8698692 DOI: 10.3390/biomedicines9121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has become an attractive therapeutic strategy for lowering low-density lipoprotein cholesterol (LDL-C). In this study, a novel high affinity humanized IgG1 mAb (named h5E12-L230G) targeting the catalytic domain of human PCSK9 (hPCSK9) was generated by using CDR-grafting, alanine-scanning mutagenesis, and saturated site-directed mutagenesis. The heavy-chain constant region of h5E12-L230G was modified to eliminate the cytotoxic effector functions and mitigate the heterogeneity. The biolayer interferometry (BLI) binding assay and molecular docking study revealed that h5E12-L230G binds to the catalytic domain of hPCSK9 with nanomolar affinity (KD = 1.72 nM) and an extremely slow dissociation rate (koff, 4.84 × 10−5 s−1), which interprets its quite low binding energy (−54.97 kcal/mol) with hPCSK9. Additionally, h5E12-L230G elevated the levels of LDLR and enhanced the LDL-C uptake in HepG2 cells, as well as reducing the serum LDL-C and total cholesterol (TC) levels in hyperlipidemic mouse model with high potency comparable to the positive control alirocumab. Our data indicate that h5E12-L230G is a high-affinity anti-PCSK9 antibody candidate with an extremely slow dissociation rate for favorably treating hypercholesterolemia and relevant cardiovascular diseases.
Collapse
|
27
|
Yalcin-Ozkat G. Molecular Modeling Strategies of Cancer Multidrug Resistance. Drug Resist Updat 2021; 59:100789. [PMID: 34973929 DOI: 10.1016/j.drup.2021.100789] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.
Collapse
Affiliation(s)
- Gozde Yalcin-Ozkat
- Recep Tayyip Erdogan University, Faculty of Engineering and Architecture, Bioengineering Department, 53100, Rize, Turkey; Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106, Magdeburg, Germany.
| |
Collapse
|
28
|
Flavonoids as Inhibitors of Bacterial Efflux Pumps. Molecules 2021; 26:molecules26226904. [PMID: 34833994 PMCID: PMC8625893 DOI: 10.3390/molecules26226904] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Flavonoids are widely occurring secondary plant constituents, and are abundant in vegetable and fruit diets as well as herbal medicines. Therapeutic treatment options for bacterial infections are limited due to the spread of antimicrobial resistances. Hence, in a number of studies during the last few years, different classes of plant secondary metabolites as resistance-modifying agents have been carried out. In this review, we present the role of flavonoids as inhibitors of bacterial efflux pumps. Active compounds could be identified in the subclasses of chalcones, flavan-3-ols, flavanones, flavones, flavonols, flavonolignans and isoflavones; by far the majority of compounds were aglycones, although some glycosides like kaempferol glycosides with p-coumaroyl acylation showed remarkable results. Staphylococcus aureus NorA pump was the focus of many studies, followed by mycobacteria, whereas Gram-negative bacteria are still under-investigated.
Collapse
|
29
|
Shityakov S, Skorb EV, Förster CY, Dandekar T. Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease. Front Chem 2021; 9:736509. [PMID: 34751244 PMCID: PMC8571023 DOI: 10.3389/fchem.2021.736509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.
Collapse
Affiliation(s)
- Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Ekaterina V. Skorb
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|