1
|
Li P, Zheng S, Leung HM, Liu LS, Chang TJH, Maryam A, Wang F, Chin YR, Lo PK. TNA-Mediated Antisense Strategy to Knockdown Akt Genes for Triple-Negative Breast Cancer Therapy. SMALL METHODS 2024; 8:e2400291. [PMID: 38779741 PMCID: PMC11579567 DOI: 10.1002/smtd.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Triple-negative breast cancer (TNBC) remains a significant challenge in terms of treatment, with limited efficacy of chemotherapy due to side effects and acquired drug resistance. In this study, a threose nucleic acid (TNA)-mediated antisense approach is employed to target therapeutic Akt genes for TNBC therapy. Specifically, two new TNA strands (anti-Akt2 and anti-Akt3) are designed and synthesized that specifically target Akt2 and Akt3 mRNAs. These TNAs exhibit exceptional enzymatic resistance, high specificity, enhance binding affinity with their target RNA molecules, and improve cellular uptake efficiency compared to natural nucleic acids. In both 2D and 3D TNBC cell models, the TNAs effectively inhibit the expression of their target mRNA and protein, surpassing the effects of scrambled TNAs. Moreover, when administered to TNBC-bearing animals in combination with lipid nanoparticles, the targeted anti-Akt TNAs lead to reduced tumor sizes and decreased target protein expression compared to control groups. Silencing the corresponding Akt genes also promotes apoptotic responses in TNBC and suppresses tumor cell proliferation in vivo. This study introduces a novel approach to TNBC therapy utilizing TNA polymers as antisense materials. Compared to conventional miRNA- and siRNA-based treatments, the TNA system holds promise as a cost-effective and scalable platform for TNBC treatment, owing to its remarkable enzymatic resistance, inexpensive synthetic reagents, and simple production procedures. It is anticipated that this TNA-based polymeric system, which targets anti-apoptotic proteins involved in breast tumor development and progression, can represent a significant advancement in the clinical development of effective antisense materials for TNBC, a cancer type that lacks effective targeted therapy.
Collapse
Affiliation(s)
- Pan Li
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Shixue Zheng
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Hoi Man Leung
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Ling Sum Liu
- Department of ChemistryMolecular Sciences Research HubImperial College LondonWhite City CampusWood LaneLondonW12 0BZU.K.
| | - Tristan Juin Han Chang
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Alishba Maryam
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Fei Wang
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)Dongguan523059P. R. China
| | - Y. Rebecca Chin
- Tung Biomedical Sciences CentreDepartment of Biomedical SciencesCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongTat Chee AvenueKowloonHong Kong SARP. R. China
- Key Laboratory of Biochip TechnologyBiotechand Health CareShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
2
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
4
|
Datsyuk JK, Paudel KR, Rajput R, Kokkinis S, El Sherkawi T, Singh SK, Gupta G, Chellappan DK, Yeung S, Hansbro PM, Oliver BGG, Santos HA, Dua K, De Rubis G. Emerging applications and prospects of NFκB decoy oligodeoxynucleotides in managing respiratory diseases. Chem Biol Interact 2023; 385:110737. [PMID: 37774998 DOI: 10.1016/j.cbi.2023.110737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Chronic respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) have been a burden to society for an extended period. Currently, there are only preventative treatments in the form of mono- or multiple-drug therapy available to patients who need to utilize it daily. Hence, throughout the years there has been a substantial amount of research in understanding what causes inflammation in the context of these diseases. For example, the transcription factor NFκB has a pivotal role in causing chronic inflammation. Subsequent research has been exploring ways to block the activation of NFκB as a potential therapeutic strategy for many inflammatory diseases. One of the possible ways through which this is probable is the utilisation of decoy oligodeoxynucleotides, which are synthetic, short, single-stranded DNA fragments that mimic the consensus binding site of a targeted transcription factor, thereby functionally inactivating it. However, limitations to the implementation of decoy oligodeoxynucleotides include their rapid degradation by intracellular nucleases and the lack of targeted tissue specificity. An advantageous approach to overcome these limitations involves using nanoparticles as a vessel for drug delivery. In this review, all of those key elements will be explored as to how they come together as an application to treat chronic inflammation in respiratory diseases.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hélder A Santos
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Udu-Ituma S, Adélaïde J, Le TK, Omabe K, Finetti P, Paris C, Guille A, Bertucci F, Birnbaum D, Rocchi P, Chaffanet M. ZNF703 mRNA-Targeting Antisense Oligonucleotide Blocks Cell Proliferation and Induces Apoptosis in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:1930. [PMID: 37514116 PMCID: PMC10384502 DOI: 10.3390/pharmaceutics15071930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The luminal B molecular subtype of breast cancers (BC) accounts for more than a third of BCs and is associated with aggressive clinical behavior and poor prognosis. The use of endocrine therapy in BC treatment has significantly contributed to the decrease in the number of deaths in recent years. However, most BC patients with prolonged exposure to estrogen receptor (ER) selective modulators such as tamoxifen develop resistance and become non-responsive over time. Recent studies have implicated overexpression of the ZNF703 gene in BC resistance to endocrine drugs, thereby highlighting ZNF703 inhibition as an attractive modality in BC treatment, especially luminal B BCs. However, there is no known inhibitor of ZNF703 due to its nuclear association and non-enzymatic activity. Here, we have developed an antisense oligonucleotide (ASO) against ZNF703 mRNA and shown that it downregulates ZNF703 protein expression. ZNF703 inhibition decreased cell proliferation and induced apoptosis. Combined with cisplatin, the anti-cancer effects of ZNF703-ASO9 were improved. Moreover, our work shows that ASO technology may be used to increase the number of targetable cancer genes.
Collapse
Affiliation(s)
- Sandra Udu-Ituma
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- Department of Biology, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki P.M.B. 1010, Ebonyi State, Nigeria
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - José Adélaïde
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Thi Khanh Le
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Kenneth Omabe
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Pascal Finetti
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Clément Paris
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Arnaud Guille
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - François Bertucci
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Daniel Birnbaum
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Palma Rocchi
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Max Chaffanet
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
6
|
Le TK, Cherif C, Omabe K, Paris C, Lannes F, Audebert S, Baudelet E, Hamimed M, Barbolosi D, Finetti P, Bastide C, Fazli L, Gleave M, Bertucci F, Taïeb D, Rocchi P. DDX5 mRNA-targeting antisense oligonucleotide as a new promising therapeutic in combating castration-resistant prostate cancer. Mol Ther 2023; 31:471-486. [PMID: 35965411 PMCID: PMC9931527 DOI: 10.1016/j.ymthe.2022.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The heat shock protein 27 (Hsp27) has emerged as a principal factor of the castration-resistant prostate cancer (CRPC) progression. Also, an antisense oligonucleotide (ASO) against Hsp27 (OGX-427 or apatorsen) has been assessed in different clinical trials. Here, we illustrate that Hsp27 highly regulates the expression of the human DEAD-box protein 5 (DDX5), and we define DDX5 as a novel therapeutic target for CRPC treatment. DDX5 overexpression is strongly correlated with aggressive tumor features, notably with CRPC. DDX5 downregulation using a specific ASO-based inhibitor that acts on DDX5 mRNAs inhibits cell proliferation in preclinical models, and it particularly restores the treatment sensitivity of CRPC. Interestingly, through the identification and analysis of DDX5 protein interaction networks, we have identified some specific functions of DDX5 in CRPC that could contribute actively to tumor progression and therapeutic resistance. We first present the interactions of DDX5 and the Ku70/80 heterodimer and the transcription factor IIH, thereby uncovering DDX5 roles in different DNA repair pathways. Collectively, our study highlights critical functions of DDX5 contributing to CRPC progression and provides preclinical proof of concept that a combination of ASO-directed DDX5 inhibition with a DNA damage-inducing therapy can serve as a highly potential novel strategy to treat CRPC.
Collapse
Affiliation(s)
- Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Department of Life Science, University of Science and Technology of Hanoi, Hanoi 000084, Vietnam
| | - Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Kenneth Omabe
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - François Lannes
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Stéphane Audebert
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Emilie Baudelet
- Marseille Protéomique, Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, 13009 Marseille, France
| | - Mourad Hamimed
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Dominique Barbolosi
- Inria - Inserm team COMPO, COMPutational pharmacology and clinical Oncology, Centre Inria Sophia Antipolis - Méditerranée, Centre de Recherches en Cancérologie de Marseille, Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - Cyrille Bastide
- Urology Deparment, AP-HM Hospital Nord, Aix-Marseille University, 13915 Marseille Cedex 20, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, 13273 Marseille, France; European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France.
| |
Collapse
|
7
|
Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, Fazli L, Gleave M, Manai M, Barthélémy P, Birnbaum D, Bertucci F, Taïeb D, Rocchi P. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene 2021; 41:125-137. [PMID: 34711954 PMCID: PMC8724010 DOI: 10.1038/s41388-021-02039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Disease progression and therapeutic resistance of prostate cancer (PC) are linked to multiple molecular events that promote survival and plasticity. We previously showed that heat shock protein 27 (HSP27) acted as a driver of castration-resistant phenotype (CRPC) and developed an oligonucleotides antisense (ASO) against HSP27 with evidence of anti-cancer activity in men with CRPC. Here, we show that the tumor suppressor Menin (MEN1) is highly regulated by HSP27. Menin is overexpressed in high-grade PC and CRPC. High MEN1 mRNA expression is associated with decreased biochemical relapse-free and overall survival. Silencing Menin with ASO technology inhibits CRPC cell proliferation, tumor growth, and restores chemotherapeutic sensitivity. ChIP-seq analysis revealed differential DNA binding sites of Menin in various prostatic cells, suggesting a switch from tumor suppressor to oncogenic functions in CRPC. These data support the evaluation of ASO against Menin for CRPC. ![]()
Collapse
Affiliation(s)
- Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Dang Tan Nguyen
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thibaud Sefiane
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Max Chaffanet
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Julien Vernerey
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Mohamed Manai
- Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33076 Bordeaux, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Biophysics and Nuclear Medicine Department, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, F-13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.
| |
Collapse
|
8
|
New Advances in the Research of Resistance to Neoadjuvant Chemotherapy in Breast Cancer. Int J Mol Sci 2021; 22:ijms22179644. [PMID: 34502549 PMCID: PMC8431789 DOI: 10.3390/ijms22179644] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer has an extremely high incidence in women, and its morbidity and mortality rank first among female tumors. With the increasing development of medicine today, the clinical application of neoadjuvant chemotherapy has brought new hope to the treatment of breast cancer. Although the efficacy of neoadjuvant chemotherapy has been confirmed, drug resistance is one of the main reasons for its treatment failure, contributing to the difficulty in the treatment of breast cancer. This article focuses on multiple mechanisms of action and expounds a series of recent research advances that mediate drug resistance in breast cancer cells. Drug metabolizing enzymes can mediate a catalytic reaction to inactivate chemotherapeutic drugs and develop drug resistance. The drug efflux system can reduce the drug concentration in breast cancer cells. The combination of glutathione detoxification system and platinum drugs can cause breast cancer cells to be insensitive to drugs. Changes in drug targets have led to poorer efficacy of HER2 receptor inhibitors. Moreover, autophagy, epithelial–mesenchymal transition, and tumor microenvironment can all contribute to the development of resistance in breast cancer cells. Based on the relevant research on the existing drug resistance mechanism, the current treatment plan for reversing the resistance of breast cancer to neoadjuvant chemotherapy is explored, and the potential drug targets are analyzed, aiming to provide a new idea and strategy to reverse the resistance of neoadjuvant chemotherapy drugs in breast cancer.
Collapse
|