1
|
Kraemer R, Baty F, Smith HJ, Minder S, Gallati S, Brutsche MH, Matthys H. Assessment of functional diversities in patients with Asthma, COPD, Asthma-COPD overlap, and Cystic Fibrosis (CF). PLoS One 2024; 19:e0292270. [PMID: 38377145 PMCID: PMC10878531 DOI: 10.1371/journal.pone.0292270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024] Open
Abstract
The objectives of the present study were to evaluate the discriminating power of spirometric and plethysmographic lung function parameters to differenciate the diagnosis of asthma, ACO, COPD, and to define functional characteristics for more precise classification of obstructive lung diseases. From the databases of 4 centers, a total of 756 lung function tests (194 healthy subjects, 175 with asthma, 71 with ACO, 78 with COPD and 238 with CF) were collected, and gradients among combinations of target parameters from spirometry (forced expiratory volume one second: FEV1; FEV1/forced vital capacity: FEV1/FVC; forced expiratory flow between 25-75% FVC: FEF25-75), and plethysmography (effective, resistive airway resistance: sReff; aerodynamic work of breathing at rest: sWOB), separately for in- and expiration (sReffIN, sReffEX, sWOBin, sWOBex) as well as static lung volumes (total lung capacity: TLC; functional residual capacity: FRCpleth; residual volume: RV), the control of breathing (mouth occlusion pressure: P0.1; mean inspiratory flow: VT/TI; the inspiratory to total time ratio: TI/Ttot) and the inspiratory impedance (Zinpleth = P0.1/VT/TI) were explored. Linear discriminant analyses (LDA) were applied to identify discriminant functions and classification rules using recursive partitioning decision trees. LDA showed a high classification accuracy (sensitivity and specificity > 90%) for healthy subjects, COPD and CF. The accuracy dropped for asthma (~70%) and even more for ACO (~60%). The decision tree revealed that P0.1, sRtot, and VT/TI differentiate most between healthy and asthma (68.9%), COPD (82.1%), and CF (60.6%). Moreover, using sWOBex and Zinpleth ACO can be discriminated from asthma and COPD (60%). Thus, the functional complexity of obstructive lung diseases can be understood, if specific spirometric and plethysmographic parameters are used. Moreover, the newly described parameters of airway dynamics and the central control of breathing including Zinpleth may well serve as promising functional marker in the field of precision medicine.
Collapse
Affiliation(s)
- Richard Kraemer
- Centre of Pulmonary Medicine, Hirslanden Hospital Group, Salem-Hospital, Bern, Switzerland
- Department of Paediatrics, University of Bern, Bern, Switzerland
- School of Biomedical and Precision Engineering (SBPE), University of Bern, Bern, Switzerland
| | - Florent Baty
- Department of Pneumology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Hans-Jürgen Smith
- Medical Development, Research in Respiratory Diagnostics, Berlin, Germany
| | - Stefan Minder
- Centre of Pulmonary Medicine, Hirslanden Hospital Group, Salem-Hospital, Bern, Switzerland
| | - Sabina Gallati
- Department of Paediatrics, University of Bern, Bern, Switzerland
- Hirslanden Precise, Genomic Medicine, Hirslanden Hospital Group, Zollikon/Zürich, Switzerland
| | - Martin H. Brutsche
- Department of Pneumology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Heinrich Matthys
- Department of Pneumology, University Hospital of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Maglione M, Tosco A, Borrelli M, Santamaria F. Primary ciliary dyskinesia treatment: time for a new approach? THE LANCET. RESPIRATORY MEDICINE 2024; 12:2-3. [PMID: 37660716 DOI: 10.1016/s2213-2600(23)00236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Marco Maglione
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Antonella Tosco
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Melissa Borrelli
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples 80131, Italy.
| |
Collapse
|
3
|
Rennard SI. Icenticaftor, Novel Therapy for COPD: This Glass Is Half Full. Am J Respir Crit Care Med 2023; 208:346-348. [PMID: 37437299 PMCID: PMC10449066 DOI: 10.1164/rccm.202307-1175ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Stephen I Rennard
- Department of Internal Medicine University of Nebraska Medical Center Omaha, Nebraska
| |
Collapse
|
4
|
Vanherle L, Matthes F, Uhl FE, Meissner A. Ivacaftor therapy post myocardial infarction augments systemic inflammation and evokes contrasting effects with respect to tissue inflammation in brain and lung. Biomed Pharmacother 2023; 162:114628. [PMID: 37018991 DOI: 10.1016/j.biopha.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acquired cystic fibrosis transmembrane regulator (CFTR) dysfunctions have been associated with several conditions, including myocardial infarction (MI). Here, CFTR is downregulated in brain, heart, and lung tissue and associates with inflammation and degenerative processes. Therapeutically increasing CFTR expression attenuates these effects. Whether potentiating CFTR function yields similar beneficial effects post-MI is unknown. The CFTR potentiator ivacaftor is currently in clinical trials for treatment of acquired CFTR dysfunction associated with chronic obstructive pulmonary disease and chronic bronchitis. Thus, we tested ivacaftor as therapeutic strategy for MI-associated target tissue inflammation that is characterized by CFTR alterations. MI was induced in male C57Bl/6 mice by ligation of the left anterior descending coronary artery. Mice were treated with ivacaftor starting ten weeks post-MI for two consecutive weeks. Systemic ivacaftor treatment ameliorates hippocampal neuron dendritic atrophy and spine loss and attenuates hippocampus-dependent memory deficits occurring post-MI. Similarly, ivacaftor therapy mitigates MI-associated neuroinflammation (i.e., reduces higher proportions of activated microglia). Systemically, ivacaftor leads to higher frequencies of circulating Ly6C+ and Ly6Chi cells compared to vehicle-treated MI mice. Likewise, an ivacaftor-mediated augmentation of MI-associated pro-inflammatory macrophage phenotype characterized by higher CD80-positivity is observed in the MI lung. In vitro, ivacaftor does not alter LPS-induced CD80 and tumor necrosis factor alpha mRNA increases in BV2 microglial cells, while augmenting mRNA levels of these markers in mouse macrophages and differentiated human THP-1-derived macrophages. Our results suggest that ivacaftor promotes contrasting effects depending on target tissue post-MI, which may be largely dependent on its effects on different myeloid cell types.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Frank Matthes
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
5
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Agusti A, Ambrosino N, Blackstock F, Bourbeau J, Casaburi R, Celli B, Crouch R, Negro RD, Dreher M, Garvey C, Gerardi D, Goldstein R, Hanania N, Holland AE, Kaur A, Lareau S, Lindenauer PK, Mannino D, Make B, Maltais F, Marciniuk JD, Meek P, Morgan M, Pepin JL, Reardon JZ, Rochester C, Singh S, Spruit MA, Steiner MC, Troosters T, Vitacca M, Clini E, Jardim J, Nici L, Raskin J, ZuWallack R. COPD: Providing the right treatment for the right patient at the right time. Respir Med 2023; 207:107041. [PMID: 36610384 DOI: 10.1016/j.rmed.2022.107041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common disease associated with significant morbidity and mortality that is both preventable and treatable. However, a major challenge in recognizing, preventing, and treating COPD is understanding its complexity. While COPD has historically been characterized as a disease defined by airflow limitation, we now understand it as a multi-component disease with many clinical phenotypes, systemic manifestations, and associated co-morbidities. Evidence is rapidly emerging in our understanding of the many factors that contribute to the pathogenesis of COPD and the identification of "early" or "pre-COPD" which should provide exciting opportunities for early treatment and disease modification. In addition to breakthroughs in our understanding of the origins of COPD, we are optimizing treatment strategies and delivery of care that are showing impressive benefits in patient-centered outcomes and healthcare utilization. This special issue of Respiratory Medicine, "COPD: Providing the Right Treatment for the Right Patient at the Right Time" is a summary of the proceedings of a conference held in Stresa, Italy in April 2022 that brought together international experts to discuss emerging evidence in COPD and Pulmonary Rehabilitation in honor of a distinguished friend and colleague, Claudio Ferdinando Donor (1948-2021). Claudio was a true pioneer in the field of pulmonary rehabilitation and the comprehensive care of individuals with COPD. He held numerous leadership roles in in the field, provide editorial stewardship of several respiratory journals, authored numerous papers, statement and guidelines in COPD and Pulmonary Rehabilitation, and provided mentorship to many in our field. Claudio's most impressive talent was his ability to organize spectacular conferences and symposia that highlighted cutting edge science and clinical medicine. It is in this spirit that this conference was conceived and planned. These proceedings are divided into 4 sections which highlight crucial areas in the field of COPD: (1) New concepts in COPD pathogenesis; (2) Enhancing outcomes in COPD; (3) Non-pharmacologic management of COPD; and (4) Optimizing delivery of care for COPD. These presentations summarize the newest evidence in the field and capture lively discussion on the exciting future of treating this prevalent and impactful disease. We thank each of the authors for their participation and applaud their efforts toward pushing the envelope in our understanding of COPD and optimizing care for these patients. We believe that this edition is a most fitting tribute to a dear colleague and friend and will prove useful to students, clinicians, and researchers as they continually strive to provide the right treatment for the right patient at the right time. It has been our pleasure and a distinct honor to serve as editors and oversee such wonderful scholarly work.
Collapse
Affiliation(s)
- Alvar Agusti
- Clinic Barcelona Hospital University, Barcelona, Spain.
| | | | | | - Jean Bourbeau
- Department of Medicine, Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, CA, USA.
| | | | | | | | - Roberto Dal Negro
- National Centre for Pharmacoeconomics and Pharmacoepidemiology (CESFAR), Verona, Italy.
| | - Michael Dreher
- Clinic of Cardiology, Angiology, Pneumology and Intensive Medicine, University Hospital Aachen, Aachen, 52074, DE, USA.
| | | | | | - Roger Goldstein
- Respiratory Rehabilitation Service, West Park Health Care Centre, Toronto, Ontario, CA, USA.
| | | | - Anne E Holland
- Departments of Physiotherapy and Respiratory Medicine, Alfred Health, Melbourne, Australia; Central Clinical School, Monash University, Melbourne, Australia; Institute for Breathing and Sleep, Melbourne, Australia.
| | - Antarpreet Kaur
- Section of Pulmonary, Critical Care, and Sleep Medicine, Trinity Health of New England, Hartford, CT, USA; University of Colorado School of Nursing, Aurora, CO, USA.
| | - Suzanne Lareau
- University of Colorado School of Nursing, Aurora, CO, USA.
| | - Peter K Lindenauer
- Department of Healthcare Delivery and Population Sciences, University of Massachusetts Chan Medical School - Baystate, Springfield, MA, USA.
| | | | - Barry Make
- National Jewish Health, Denver, CO, USA.
| | - François Maltais
- Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec, CA, USA.
| | - Jeffrey D Marciniuk
- Division of Respirology, Critical Care and Sleep Medicine, Department of Medicine, University of Saskatchewan, Saskatoon, CA, USA.
| | - Paula Meek
- University of Utah College of Nursing, Salt Lake City, UT, USA.
| | - Mike Morgan
- Dept of Respiratory Medicine, University Hospitals of Leicester, UK.
| | - Jean-Louis Pepin
- CHU de Grenoble - Clin Univ. de physiologie, sommeil et exercice, Grenoble, France.
| | - Jane Z Reardon
- Section of Pulmonary, Critical Care, and Sleep Medicine, Trinity Health of New England, Hartford, CT, USA.
| | | | - Sally Singh
- Department of Respiratory Diseases, University of Leicester, UK.
| | | | - Michael C Steiner
- Department of Respiratory Sciences, Leicester NIHR Biomedical Research Centre, Professor, University of Leicester, UK.
| | - Thierry Troosters
- Laboratory of Respiratory Diseases and Thoracic Surgery, KU Leuven: Leuven, Vlaanderen, Belgium.
| | - Michele Vitacca
- Department of Respiratory Rehabilitation, ICS S. Maugeri Care and Research Institutes, IRCCS Pavia, Italy.
| | - Enico Clini
- University of Modena and Reggio Emilia, Italy.
| | - Jose Jardim
- Federal University of Sao Paulo Paulista, Brazil.
| | - Linda Nici
- nBrown University School of Medicine, USA.
| | | | - Richard ZuWallack
- Section of Pulmonary, Critical Care, and Sleep Medicine, Saint Francis Hospital and Medical Center, 114 Woodland Street, Hartford, CT, 06105, USA.
| |
Collapse
|
7
|
The COPD-Associated Polymorphism Impairs the CFTR Function to Suppress Excessive IL-8 Production upon Environmental Pathogen Exposure. Int J Mol Sci 2023; 24:ijms24032305. [PMID: 36768629 PMCID: PMC9916815 DOI: 10.3390/ijms24032305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
COPD is a lifestyle-related disease resulting from irreversible damage to respiratory tissues mostly due to chronic exposure to environmental pollutants, including cigarette smoke. Environmental pathogens and pollutants induce the acquired dysfunction of the CFTR Cl- channel, which is invoked in COPD. Despite the increased incidence of CFTR polymorphism R75Q or M470V in COPD patients, the mechanism of how the CFTR variant affects COPD pathogenesis remains unclear. Here, we investigated the impact of CFTR polymorphisms (R75Q, M470V) on the CFTR function in airway epithelial cell models. While wild-type (WT) CFTR suppressed the proinflammatory cytokine production induced by COPD-related pathogens including pyocyanin (PYO), R75Q- or M470V-CFTR failed. Mechanistically, the R75Q- or M470V-CFTR fractional PM activity (FPMA) was significantly lower than WT-CFTR in the presence of PYO. Notably, the CF drug Trikafta corrected the PM expression of R75Q- or M470V-CFTR even upon PYO exposure and consequently suppressed the excessive IL-8 production. These results suggest that R75Q or M470V polymorphism impairs the CFTR function to suppress the excessive proinflammatory response to environmental pathogens associated with COPD. Moreover, Trikafta may be useful to prevent the COPD pathogenesis associated with acquired CFTR dysfunction.
Collapse
|
8
|
Ancel J, Guecamburu M, Marques Da Silva V, Schilfarth P, Boyer L, Pilette C, Martin C, Devillier P, Berger P, Zysman M, Le Rouzic O, Gonzalez-Bermejo J, Degano B, Burgel PR, Ahmed E, Roche N, Deslee G. [Take-home messages from the COPD 2021 biennial of the French Society of Respiratory Diseases. Understanding to so as to better innovate]. Rev Mal Respir 2022; 39:427-441. [PMID: 35568574 DOI: 10.1016/j.rmr.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The first COPD biennial organized by the French Society of Respiratory Diseases (SPLF) took place on 17 December 2021. STATE OF THE ART The objective of the biennial was to discuss current knowledge regarding COPD pathophysiology, current treatments, research development, and future therapeutic approaches. PERSPECTIVES The different lecturers laid emphasis on the complexity of pathophysiologic mechanisms including bronchial, bronchiolar and parenchymal alterations, and also dwelt on the role of microbiota composition in COPD pathenogenesis. They pointed out that addition to inhaled treatments, ventilatory support and endoscopic approaches have been increasingly optimized. The development of new therapeutic pathways such as biotherapy and cell therapy (stem cells…) call for further exploration. CONCLUSIONS The dynamism of COPD research was repeatedly underlined, and needs to be further reinforced, the objective being to "understand so as to better innovate" so as to develop effective new strategies for treatment and management of COPD.
Collapse
Affiliation(s)
- J Ancel
- Inserm UMRS-1250, service de pneumologie, université Reims Champagne Ardenne, hôpital Maison Blanche, Reims, France
| | - M Guecamburu
- Service des maladies respiratoires, hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux, France
| | - V Marques Da Silva
- Inserm U955, FHU SENEC, université Paris-Est Créteil, institut Mondor de recherche biomédicale, équipe GEIC2O, Créteil, France
| | - P Schilfarth
- Service des maladies respiratoires, hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux, France; Inserm U1045, centre de recherche cardio-thoracique de Bordeaux, Pessac, France
| | - L Boyer
- Département de physiologie-explorations fonctionnelles, université Paris-Est, hôpital Henri-Mondor, AP-HP, UMR S955, FHU SENEC, UPEC, Créteil, France
| | - C Pilette
- Département de pneumologie, université catholique de Louvain, cliniques universitaires Saint-Luc et institut de recherche expérimentale et clinique, Bruxelles, Belgique
| | - C Martin
- Inserm U1016, service de pneumologie, AP-HP Paris, hôpital Cochin et institut Cochin, université de Paris, Paris, France
| | - P Devillier
- Département des maladies respiratoires, unité de recherche en pharmacologie respiratoire, VIM Suresnes (UMR 0892, université Paris-Saclay), hôpital Foch, Suresnes, France
| | - P Berger
- Service d'exploration fonctionnelle respiratoire, département de pharmacologie, centre de recherche cardiothoracique, U1045, CIC 1401, Pessac, France
| | - M Zysman
- Service des maladies respiratoires, hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux, France; Inserm U1045, centre de recherche cardio-thoracique de Bordeaux, Pessac, France
| | - O Le Rouzic
- Inserm, CIIL Center for infection and immunity of Lille, université de Lille, CHU de Lille, pneumologie et immuno-allergologie, Institut Pasteur de Lille, U1019 - UMR9017, Lille, France
| | - J Gonzalez-Bermejo
- Inserm, UMRS115 neurophysiologie respiratoire expérimentale et clinique, service de pneumologie, médecine intensive et réanimation (département R3S), Sorbonne université, groupe hospitalier universitaire AP-HP, Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - B Degano
- Inserm 1042, service de pneumologie physiologie, CHU de Grenoble, Grenoble, France
| | - P-R Burgel
- Inserm U1016, service de pneumologie, AP-HP Paris, hôpital Cochin et institut Cochin, université de Paris, Paris, France
| | - E Ahmed
- Département des maladies respiratoires, IRMB, université de Montpellier, CHU de Montpellier, Montpellier, France
| | - N Roche
- Inserm U1016, service de pneumologie, AP-HP Paris, hôpital Cochin et institut Cochin, université de Paris, Paris, France
| | - G Deslee
- Inserm UMRS-1250, service de pneumologie, université Reims Champagne Ardenne, hôpital Maison Blanche, Reims, France.
| |
Collapse
|
9
|
Martinez-Garcia MA, Sierra-Párraga JM, Quintana E, López-Campos JL. CFTR dysfunction and targeted therapies: A vision from non-cystic fibrosis bronchiectasis and COPD. J Cyst Fibros 2022; 21:741-744. [PMID: 35551858 DOI: 10.1016/j.jcf.2022.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Miguel Angel Martinez-Garcia
- Pneumology Department, Hospital Universitario y Politécnico la Fe de Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús María Sierra-Párraga
- Pepartment of regeneration an cell therapy. Andalusian molecular biology and regenerative medicine medicine center (CABIMER)-CSIC-US-UPO, Spain
| | - Esther Quintana
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias. Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Chronic Obstructive Pulmonary Disease: The Present and Future. Biomedicines 2022; 10:biomedicines10020499. [PMID: 35203708 PMCID: PMC8962403 DOI: 10.3390/biomedicines10020499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
|