1
|
Venkatesh S, Manaz PM, Priya MH, Ambiga G, Basu S. Shedding Light on the Molecular Diversities of miRNA in Cancer- an Exquisite Mini Review. Mol Biotechnol 2024:10.1007/s12033-024-01312-5. [PMID: 39496855 DOI: 10.1007/s12033-024-01312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024]
Abstract
Short non-coding ribonucleic acids are also known as "Micro ribonucleic acids (miRNAs)". The miRNAs make a contribution to the regulation of genes and mitigation of cancer cell growth in humans. miRNAs play a significant role in several BPs, namely apoptosis, cell cycle progression, and development. It is well-recognized that miRNAs are crucial for the tumors' growth and also serve as Tumor Suppressors (TSs) or oncogenes. As miRNAs also act as an effective tumor suppressor, studying the molecular diversities of the miRNAs makes way to minimize cancer progression and the corresponding death rates in the future. Therefore, miRNAs along with their Biological Processes (BPs) and molecular diversities are thoroughly researched in this paper. Consequently, miRNAs particularly target their 3' UnTranslated Region (3'-UTR) for controlling the target mRNAs' stability and protein translation. So, this study also expresses the impact of microRNA variants in various cancer cells, namely Breast cancer, Gastric or stomach cancer, ovarian cancer, and lymphocytic leukemia. Furthermore, the database named PhenomiR and commercial kits that are used in the miRNA data analysis are discussed in this article to provide extensive knowledge about the molecular diversity analysis of miRNA and their influences on cancerous cells.
Collapse
Affiliation(s)
- Surya Venkatesh
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India.
| | - P Mohammed Manaz
- Department of Biotechnology, Sethu Institute of Technology, Virudhunagar, India
| | - M Harish Priya
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - G Ambiga
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi, India
| | - Soumyo Basu
- Department of Microbiology, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| |
Collapse
|
2
|
Lei T, Zhuang L, Dai T, Niu Q, Bao Y, Lin W, Huang C, Zheng X. Isolation, Molecular Characterisation, and Pathogenicity Analysis of a Novel Recombinant ALV-J Strain Isolated From Chinese Hetian Chickens. Vet Med Sci 2024; 10:e70053. [PMID: 39331484 PMCID: PMC11430172 DOI: 10.1002/vms3.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Avian leukosis virus subgroup J (ALV-J) primarily affects poultry, particularly chickens, leading to tumourigenesis and immunosuppression, which results in substantial economic losses. It is important to note that ALV-J is commonly found in indigenous chicken breeds in China, and the virus's vertical transmission characteristics present a significant threat to the preservation of local chicken breeds. OBJECTIVES The study aimed to investigate the characteristics and effects of the recombinant ALV-J strain LY2021J, with a focus on its genetic composition and its potential influence on virulence and pathogenicity. METHODS LY2021J was isolated using DF-1 cells and validated by enzyme-linked immunosorbent assay (ELISA) and IFA. The proviral genome was amplified using segmented PCR and then spliced together using DNASTAR software. Genome-wide genes, including gag, pol, gp85, and long terminal repeat (LTR), were compared. Recombination sites were analysed using RDP5 and SimPlot software. Pathogenicity was evaluated by monitoring symptoms and conducting examinations on SPF chickens. RESULTS The outbreak of ALV-J in China has caused significant economic losses in the poultry industry. Although largely controlled in white-feather broilers and egg-laying chickens, ALV-J has spread to yellow-feather broilers and local breeds. A strain, LY2021J, isolated from Hetian chickens, showed lower mortality despite severe dysplasia. Genetic analysis revealed high similarity between LY2021J and the Chinese strains JS14NT01 and NX0101, suggesting a shared origin. Recombination with strain ev-1 and specific 3' UTR deletions may explain LY2021J's reduced virulence. Continued monitoring and prevention strategies are essential to mitigate ALV-J's impact.
Collapse
Affiliation(s)
- Tianyu Lei
- College of Life SciencesLongyan UniversityLongyanChina
- College of Animal SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liyun Zhuang
- College of Life SciencesLongyan UniversityLongyanChina
- College of Animal SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingting Dai
- College of Life SciencesLongyan UniversityLongyanChina
- College of Animal SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qun Niu
- College of Life SciencesLongyan UniversityLongyanChina
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary BiotechnologyLongyanChina
| | - Yinli Bao
- College of Life SciencesLongyan UniversityLongyanChina
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary BiotechnologyLongyanChina
| | - Weiming Lin
- College of Life SciencesLongyan UniversityLongyanChina
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary BiotechnologyLongyanChina
| | - Cuiqin Huang
- College of Life SciencesLongyan UniversityLongyanChina
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary BiotechnologyLongyanChina
| | - Xintian Zheng
- College of Life SciencesLongyan UniversityLongyanChina
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Veterinary BiotechnologyLongyanChina
| |
Collapse
|
3
|
Cosenza G, Pauciullo A. A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals (Basel) 2024; 14:2918. [PMID: 39457849 PMCID: PMC11503821 DOI: 10.3390/ani14202918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The αs2-casein is a phosphoprotein secreted in the milk of most mammals, and it is the most hydrophilic of all caseins. Contrary to genes found in ruminants, in donkeys two different encoding genes for donkey αs2-casein (CSN1S2 I and CSN1S2 II) have been identified. However, unlike in ruminants, the variability at these loci has not been characterized in detail in donkeys until now. In this study, we analyze the transcript profile of the donkey CSN1S2 I and CSN1S2 II genes, and we identify and describe the variability of these loci in the Ragusana and Amiatina breeds reared in Italy. The analysis of the CSN1S2 I Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) products and subsequent sequencing showed, in addition to correctly spliced mRNA, seven other minor mRNAs resulting from differential splicing events involving, in various combinations, entire exons (4, 5, 6, and 11), parts of exons (5' or 3' end of exon 17), or the recognition of intronic sequences as an exon (exon 12'). Similarly, the transcription analysis of the CSN1S2 II gene revealed a remarkable variability in splicing events, mainly concerning the alternative insertion of an extra exon 7 (named 7'); the first 33 bp of exon 13; or the alternative skipping of exons 9, 10, 11, 12, and 15, and their combinations. At the mRNA level for CSN1S2 I, seven SNPs were observed, five of which led to amino acid changes: p.T73>A, p.I109>V, p.I130>V, p.I146>T, and p.D217>Y. Similarly, nine SNPs were observed at the CSN1S2 II locus, seven of which are non-synonymous: p.L63>F, p.H70>Q, p.D90>N, p.129A>T, p.H131>Y, p.E144>G, and p.F157>S. In addition, the DNA sequencing of exon 17 and flanking introns of the CSN1S2 I gene revealed a G>A transition at the splice acceptor site of CSN1S2 I exon 17 (FM946022.1:c.375-1G>A), resulting in an allele-specific skipping of the first 15 nucleotides of this exon, which encode the peptide 176NKINQ180, and the recognition of an in-frame cryptic splicing acceptor site: arAACAAAATCAACCAG. A genotyping method based on restriction fragment length polymorphism (XbaI PCR-RFLP) was set up for this SNP. In the total population studied (105 Ragusana and 14 Amiatina donkeys), the A allele had a frequency of 0.2437 with no evidence of deviation from the Hardy-Weinberg equilibrium. This study adds new knowledge regarding the genetic variability of αs2-caseins in donkeys and may contribute significantly to the genetic improvement of milk production for this species.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agriculture, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
- National Research Council of Italy, Institute of Animal Production in the Mediterranean Environment, Piazzale Enrico Fermi 1, 80055 Portici, NA, Italy
| |
Collapse
|
4
|
Riepe TV, Stemerdink M, Salz R, Rey AD, de Bruijn SE, Boonen E, Tomkiewicz TZ, Kwint M, Gloerich J, Wessels HJCT, Delanote E, De Baere E, van Nieuwerburgh F, De Keulenaer S, Ferrari B, Ferrari S, Coppieters F, Cremers FPM, van Wyk E, Roosing S, de Vrieze E, ‘t Hoen PAC. A proteogenomic atlas of the human neural retina. Front Genet 2024; 15:1451024. [PMID: 39371417 PMCID: PMC11450717 DOI: 10.3389/fgene.2024.1451024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
The human neural retina is a complex tissue with abundant alternative splicing and more than 10% of genetic variants linked to inherited retinal diseases (IRDs) alter splicing. Traditional short-read RNA-sequencing methods have been used for understanding retina-specific splicing but have limitations in detailing transcript isoforms. To address this, we generated a proteogenomic atlas that combines PacBio long-read RNA-sequencing data with mass spectrometry and whole genome sequencing data of three healthy human neural retina samples. We identified nearly 60,000 transcript isoforms, of which approximately one-third are novel. Additionally, ten novel peptides confirmed novel transcript isoforms. For instance, we identified a novel IMPDH1 isoform with a novel combination of known exons that is supported by peptide evidence. Our research underscores the potential of in-depth tissue-specific transcriptomic analysis to enhance our grasp of tissue-specific alternative splicing. The data underlying the proteogenomic atlas are available via EGA with identifier EGAD50000000101, via ProteomeXchange with identifier PXD045187, and accessible through the UCSC genome browser.
Collapse
Affiliation(s)
- Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
- Maastricht University Medical Center+, Maastricht, Netherlands
| | - Merel Stemerdink
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alfredo Dueñas Rey
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Erica Boonen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
- Maastricht University Medical Center+, Maastricht, Netherlands
| | - Tomasz Z. Tomkiewicz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
- Maastricht University Medical Center+, Maastricht, Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jolein Gloerich
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Hans J. C. T. Wessels
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Emma Delanote
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sarah De Keulenaer
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - Frauke Coppieters
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
- Maastricht University Medical Center+, Maastricht, Netherlands
| | - Erwin van Wyk
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
- Maastricht University Medical Center+, Maastricht, Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands
| | - Peter A. C. ‘t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases. Genes Genomics 2024:10.1007/s13258-024-01547-1. [PMID: 39215947 DOI: 10.1007/s13258-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region. OBJECTIVE To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it. METHODS The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA. RESULTS Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased. CONCLUSION This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
6
|
Xu H, Wu Y, Chen Q, Yu Y, Meng Q, Qin N, Zhang W, Tao X, Li S, Tian T, Zhang L, Ma H, Cui J, Chu M. Integrating apaQTL and eQTL analysis identifies a potential causal variant associated with lung adenocarcinoma risk in the Chinese population. Commun Biol 2024; 7:860. [PMID: 39003419 PMCID: PMC11246497 DOI: 10.1038/s42003-024-06502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Alternative polyadenylation (APA) plays a crucial role in cancer biology. Here, we used data from the 3'aQTL-atlas, GTEx, and the China Nanjing Lung Cancer GWAS database to explore the association between apaQTL/eQTL-SNPs and the risk of lung adenocarcinoma (LUAD). The variant T allele of rs277646 in NIT2 is associated with an increased risk of LUAD (OR = 1.12, P = 0.015), lower PDUI values, and higher NIT2 expression. The 3'RACE experiment showed multiple poly (A) sites in NIT2, with the rs277646-T allele causing preferential use of the proximal poly (A) site, resulting in a shorter 3'UTR transcript. This leads to the loss of the hsa-miR-650 binding site, thereby affecting LUAD malignant phenotypes by regulating the expression level of NIT2. Our findings may provide new insights into understanding and exploring APA events in LUAD carcinogenesis.
Collapse
Affiliation(s)
- Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yutong Wu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiong Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, MA, USA
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Siqi Li
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Yang X, Chen X, Liu C, Wang Z, Lei W, Li Q, Zhao Y, Wang X. Dynamic Alternative Polyadenylation during Litopenaeus Vannamei Metamorphosis Development. Genes (Basel) 2024; 15:837. [PMID: 39062616 PMCID: PMC11275414 DOI: 10.3390/genes15070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As an important mechanism in the post-transcriptional regulation of eukaryotic gene expression, alternative polyadenylation (APA) plays a key role in biological processes such as cell proliferation and differentiation. However, the role and dynamic pattern of APA during Litopenaeus vannamei metamorphosis are poorly understood. Here, RNA-seq data covering from the embryo to the maturation (16 time points) of L. vannamei were utilized. We identified 247 differentially expressed APA events between early and adult stages, and through fuzzy mean clustering analysis, we discovered five dynamic APA patterns. Among them, the gradual elongation of the 3'UTR is the major APA pattern that changes over time, and its genes are enriched in the pathways of protein and energy metabolism. Finally, we constructed mRNA-miRNA and PPI networks and detected several central miRNAs that may regulate L. vannamei development. Our results revealed the complex APA mechanisms in L. vannamei metamorphosis, shedding new light on post-transcriptional regulation of crustacean metamorphosis.
Collapse
Affiliation(s)
- Xueqin Yang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Xiuli Chen
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Zezhong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Wei Lei
- Department of Pharmaceutical and Graduate Life Sciences, College of Pharmacy, Natural & Health Sciences, Manchester University, Fort Wayne, IN 46845, USA;
| | - Qiangyong Li
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Yongzhen Zhao
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China;
| | - Xia Wang
- China (Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (X.Y.); (X.C.)
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
8
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
9
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
10
|
Ge S, Wang X, Wang Y, Dong M, Li D, Niu K, Wang T, Liu R, Zhao C, Liu N, Zhong M. Hidden features of NAD-RNA epitranscriptome in Drosophila life cycle. iScience 2024; 27:108618. [PMID: 38197055 PMCID: PMC10775904 DOI: 10.1016/j.isci.2023.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD), a nucleotide-containing metabolite, can be incorporated into the RNA 5'-terminus to result in NAD-capped RNA (NAD-RNA). Since NAD has been heightened as one of the most essential metabolites in cells, its linkage to RNA represents a critical but poorly studied modification at the epitranscriptomic level. Here, we design a highly sensitive method, DO-seq, to capture NAD-RNAs. Using Drosophila, we identify thousands of previously unexplored NAD-RNAs and their dynamics in the fly life cycle, from embryo to adult. We show the evidence that chromosomal clustering might be the structural basis by which co-expression can couple with NAD capping on physically and functionally linked genes. Furthermore, we note that NAD capping of cuticle genes inversely correlates with their gene expression. Combined, we propose NAD-RNA epitranscriptome as a hidden layer of regulation that underlies biological processes. DO-seq empowers the identification of NAD-capped RNAs, facilitating functional investigation into this modification.
Collapse
Affiliation(s)
- Shuwen Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Minghui Dong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Dean Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongyao Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Rui Liu
- Singlera Genomics, 500 Fu Rong Hua Road, Shanghai 201204, China
| | - Chao Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Road, Shanghai 201210, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 131 Dong An Road, Shanghai 200032, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Road, Shanghai 201210, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
12
|
Philibert R, Dogan TK, Knight S, Ahmad F, Lau S, Miles G, Knowlton KU, Dogan MV. Validation of an Integrated Genetic-Epigenetic Test for the Assessment of Coronary Heart Disease. J Am Heart Assoc 2023; 12:e030934. [PMID: 37982274 PMCID: PMC10727271 DOI: 10.1161/jaha.123.030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) is the leading cause of death in the world. Unfortunately, many of the key diagnostic tools for CHD are insensitive, invasive, and costly; require significant specialized infrastructure investments; and do not provide information to guide postdiagnosis therapy. In prior work using data from the Framingham Heart Study, we provided in silico evidence that integrated genetic-epigenetic tools may provide a new avenue for assessing CHD. METHODS AND RESULTS In this communication, we use an improved machine learning approach and data from 2 additional cohorts, totaling 449 cases and 2067 controls, to develop a better model for ascertaining symptomatic CHD. Using the DNA from the 2 new cohorts, we translate and validate the in silico findings into an artificial intelligence-guided, clinically implementable method that uses input from 6 methylation-sensitive digital polymerase chain reaction and 10 genotyping assays. Using this method, the overall average area under the curve, sensitivity, and specificity in the 3 test cohorts is 82%, 79%, and 76%, respectively. Analysis of targeted cytosine-phospho-guanine loci shows that they map to key risk pathways involved in atherosclerosis that suggest specific therapeutic approaches. CONCLUSIONS We conclude that this scalable integrated genetic-epigenetic approach is useful for the diagnosis of symptomatic CHD, performs favorably as compared with many existing methods, and may provide personalized insight to CHD therapy. Furthermore, given the dynamic nature of DNA methylation and the ease of methylation-sensitive digital polymerase chain reaction methodologies, these findings may pave a pathway for precision epigenetic approaches for monitoring CHD treatment response.
Collapse
Affiliation(s)
- Robert Philibert
- Cardio Diagnostics IncChicagoILUSA
- Department of PsychiatryUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| | | | - Stacey Knight
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
- Department of Internal MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| | - Stanley Lau
- Southern California Heart CentersSan GabrielCAUSA
| | - George Miles
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kirk U. Knowlton
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
| | - Meeshanthini V. Dogan
- Cardio Diagnostics IncChicagoILUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| |
Collapse
|
13
|
Nguyen LAC, Mori M, Yasuda Y, Galipon J. Functional Consequences of Shifting Transcript Boundaries in Glucose Starvation. Mol Cell Biol 2023; 43:611-628. [PMID: 37937348 PMCID: PMC10761120 DOI: 10.1080/10985549.2023.2270406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Glucose is a major source of carbon and essential for the survival of many organisms, ranging from yeast to human. A sudden 60-fold reduction of glucose in exponentially growing fission yeast induces transcriptome-wide changes in gene expression. This regulation is multilayered, and the boundaries of transcripts are known to vary, with functional consequences at the protein level. By combining direct RNA sequencing with 5'-CAGE and short-read sequencing, we accurately defined the 5'- and 3'-ends of transcripts that are both poly(A) tailed and 5'-capped in glucose starvation, followed by proteome analysis. Our results confirm previous experimentally validated loci with alternative isoforms and reveal several transcriptome-wide patterns. First, we show that sense-antisense gene pairs are more strongly anticorrelated when a time lag is taken into account. Second, we show that the glucose starvation response initially elicits a shortening of 3'-UTRs and poly(A) tails, followed by a shortening of the 5'-UTRs at later time points. These result in domain gains and losses in proteins involved in the stress response. Finally, the relatively poor overlap both between differentially expressed genes (DEGs), differential transcript usage events (DTUs), and differentially detected proteins (DDPs) highlight the need for further study on post-transcriptional regulation mechanisms in glucose starvation.
Collapse
Affiliation(s)
- Lan Anh Catherine Nguyen
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Institute of Innovation for Future Society, Nagoya University, Aichi, Nagoya, Japan
| | - Yuji Yasuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Fujisawa, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Yonezawa, Japan
| |
Collapse
|
14
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
15
|
Zhang L, More KR, Ojha A, Jackson CB, Quinlan BD, Li H, He W, Farzan M, Pardi N, Choe H. Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines 2023; 8:156. [PMID: 37821446 PMCID: PMC10567765 DOI: 10.1038/s41541-023-00751-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
During the COVID-19 pandemic, Pfizer-BioNTech and Moderna successfully developed nucleoside-modified mRNA lipid nanoparticle (LNP) vaccines. SARS-CoV-2 spike protein expressed by those vaccines are identical in amino acid sequence, but several key components are distinct. Here, we compared the effect of ionizable lipids, untranslated regions (UTRs), and nucleotide composition of the two vaccines, focusing on mRNA delivery, antibody generation, and long-term stability. We found that the ionizable lipid, SM-102, in Moderna's vaccine performs better than ALC-0315 in Pfizer-BioNTech's vaccine for intramuscular delivery of mRNA and antibody production in mice and long-term stability at 4 °C. Moreover, Pfizer-BioNTech's 5' UTR and Moderna's 3' UTR outperform their counterparts in their contribution to transgene expression in mice. We further found that varying N1-methylpseudouridine content at the wobble position of mRNA has little effect on vaccine efficacy. These findings may contribute to the further improvement of nucleoside-modified mRNA-LNP vaccines and therapeutics.
Collapse
Affiliation(s)
- Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| | - Kunal R More
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Cody B Jackson
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Brian D Quinlan
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Hao Li
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
- Center For Integrated Solutions for Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Microbiology, UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
16
|
Barbagallo C, Stella M, Ferrara C, Caponnetto A, Battaglia R, Barbagallo D, Di Pietro C, Ragusa M. RNA-RNA competitive interactions: a molecular civil war ruling cell physiology and diseases. EXPLORATION OF MEDICINE 2023:504-540. [DOI: 10.37349/emed.2023.00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
The idea that proteins are the main determining factors in the functioning of cells and organisms, and their dysfunctions are the first cause of pathologies, has been predominant in biology and biomedicine until recently. This protein-centered view was too simplistic and failed to explain the physiological and pathological complexity of the cell. About 80% of the human genome is dynamically and pervasively transcribed, mostly as non-protein-coding RNAs (ncRNAs), which competitively interact with each other and with coding RNAs generating a complex RNA network regulating RNA processing, stability, and translation and, accordingly, fine-tuning the gene expression of the cells. Qualitative and quantitative dysregulations of RNA-RNA interaction networks are strongly involved in the onset and progression of many pathologies, including cancers and degenerative diseases. This review will summarize the RNA species involved in the competitive endogenous RNA network, their mechanisms of action, and involvement in pathological phenotypes. Moreover, it will give an overview of the most advanced experimental and computational methods to dissect and rebuild RNA networks.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Caponnetto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
17
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Obaidat D, Giordo R, Kleinbrink EL, Banisad E, Grossman LI, Arshad R, Stark A, Maroun MC, Lipovich L, Fernandez-Madrid F. Non-coding regions of nuclear-DNA-encoded mitochondrial genes and intergenic sequences are targeted by autoantibodies in breast cancer. Front Genet 2023; 13:970619. [PMID: 37082114 PMCID: PMC10111166 DOI: 10.3389/fgene.2022.970619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2022] [Indexed: 03/31/2023] Open
Abstract
Autoantibodies against mitochondrial-derived antigens play a key role in chronic tissue inflammation in autoimmune disorders and cancers. Here, we identify autoreactive nuclear genomic DNA (nDNA)-encoded mitochondrial gene products (GAPDH, PKM2, GSTP1, SPATA5, MFF, TSPOAP1, PHB2, COA4, and HAGH) recognized by breast cancer (BC) patients’ sera as nonself, supporting a direct relationship of mitochondrial autoimmunity to breast carcinogenesis. Autoreactivity of multiple nDNA-encoded mitochondrial gene products was mapped to protein-coding regions, 3’ untranslated regions (UTRs), as well as introns. In addition, autoantibodies in BC sera targeted intergenic sequences that may be parts of long non-coding RNA (lncRNA) genes, including LINC02381 and other putative lncRNA neighbors of the protein-coding genes ERCC4, CXCL13, SOX3, PCDH1, EDDM3B, and GRB2. Increasing evidence indicates that lncRNAs play a key role in carcinogenesis. Consistent with this, our findings suggest that lncRNAs, as well as mRNAs of nDNA-encoded mitochondrial genes, mechanistically contribute to BC progression. This work supports a new paradigm of breast carcinogenesis based on a globally dysfunctional genome with altered function of multiple mitochondrial and non-mitochondrial oncogenic pathways caused by the effects of autoreactivity-induced dysregulation of multiple genes and their products. This autoimmunity-based model of carcinogenesis will open novel avenues for BC treatment.
Collapse
Affiliation(s)
- Deya Obaidat
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberta Giordo
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Erica L. Kleinbrink
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Emilia Banisad
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Rooshan Arshad
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Azadeh Stark
- Department of Pathology, Henry Ford Health System, Detroit, MI, United States
| | - Marie-Claire Maroun
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Leonard Lipovich
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Shenzhen Huayuan Biotechnology Co. Ltd, Shenzhen Huayuan Biological Science Research Institute, Shenzhen, Guangdong, China
- *Correspondence: Leonard Lipovich, ; Félix Fernandez-Madrid,
| | - Félix Fernandez-Madrid
- Department of Internal Medicine, Division of Rheumatology, Wayne State University School of Medicine, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- *Correspondence: Leonard Lipovich, ; Félix Fernandez-Madrid,
| |
Collapse
|
19
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
20
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
21
|
Hong D, Jeong S. 3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs. Mol Cells 2023; 46:48-56. [PMID: 36697237 PMCID: PMC9880603 DOI: 10.14348/molcells.2023.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/27/2023] Open
Abstract
Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.
Collapse
Affiliation(s)
- Dawon Hong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| | - Sunjoo Jeong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| |
Collapse
|
22
|
Wang J, Yuan M, Feng Y, Zhang Y, Bao S, Hao Y, Ding Y, Gao X, Yu Z, Xu Q, Zhao J, Zhu Q, Wang P, Wu C, Wang J, Li Y, Xu C, Wang J. A common whole-genome paleotetraploidization in Cucurbitales. PLANT PHYSIOLOGY 2022; 190:2430-2448. [PMID: 36053177 PMCID: PMC9706448 DOI: 10.1093/plphys/kiac410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yan Zhang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Shoutong Bao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qiang Xu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Junxin Zhao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qianwen Zhu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Ping Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Chunyang Wu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | | | | | | |
Collapse
|
23
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|
24
|
Peng Z, Li W, Gan X, Zhao C, Paudel D, Su W, Lv J, Lin S, Liu Z, Yang X. Genome-Wide Analysis of SAUR Gene Family Identifies a Candidate Associated with Fruit Size in Loquat ( Eriobotrya japonica Lindl.). Int J Mol Sci 2022; 23:13271. [PMID: 36362065 PMCID: PMC9659022 DOI: 10.3390/ijms232113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/28/2023] Open
Abstract
Fruit size is an important fruit quality trait that influences the production and commodity values of loquats (Eriobotrya japonica Lindl.). The Small Auxin Upregulated RNA (SAUR) gene family has proven to play a vital role in the fruit development of many plant species. However, it has not been comprehensively studied in a genome-wide manner in loquats, and its role in regulating fruit size remains unknown. In this study, we identified 95 EjSAUR genes in the loquat genome. Tandem duplication and segmental duplication contributed to the expansion of this gene family in loquats. Phylogenetic analysis grouped the SAURs from Arabidopsis, rice, and loquat into nine clusters. By analyzing the transcriptome profiles in different tissues and at different fruit developmental stages and comparing two sister lines with contrasting fruit sizes, as well as by functional predictions, a candidate gene (EjSAUR22) highly expressed in expanding fruits was selected for further functional investigation. A combination of Indoleacetic acid (IAA) treatment and virus-induced gene silencing revealed that EjSAUR22 was not only responsive to auxin, but also played a role in regulating cell size and fruit expansion. The findings from our study provide a solid foundation for understanding the molecular mechanisms controlling fruit size in loquats, and also provide potential targets for manipulation of fruit size to accelerate loquat breeding.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wenxiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL 33598, USA
| | - Wenbing Su
- Fruit Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Juan Lv
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Wu L, Li Y, Chen X, Yang Y, Fang C, Gu Y, Liu J, Liang X, Yang Y. Isolation and characterization of avian leukosis virus subgroup J associated with hemangioma and myelocytoma in layer chickens in China. Front Vet Sci 2022; 9:970818. [PMID: 36246325 PMCID: PMC9555167 DOI: 10.3389/fvets.2022.970818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
A strain of avian leukosis virus (ALV) belonging to a new envelope subgroup J (ALV-J) emerged in 1988 as a new subgroup of ALV and spread rapidly throughout the world. Due to the infection and spread of ALV-J, the global poultry industry experienced a significant loss. Although the disease had been prevented and controlled effectively by culling domestic chickens in the infected zone, a few field cases of ALV-J infection were reported in China in recent years. This study was conducted to characterize the genome and analyze the lesions and histopathology of the ALV-J strain named HB2020, which was isolated from layer chickens in Hubei Province, China. The full-length proviral genome sequence analysis of ALV-J HB2020 revealed that it was a recombinant strain of ev-1 and HPRS-103 in the gag gene in comparison to ALV-J prototype HPRS-103. In the 3′-untranslated region (3'UTR) of the nucleotide sequence, there were found 205-base pairs (bp) deletion, of which 175 were detected in the redundant transmembrane (rTM) region. Besides, the surface glycoprotein gene gp85 had five mutations in a conservative site, whereas the transmembrane protein gene gp37 was relatively conserved. The animal experiments conducted later on this strain have shown that HB2020 can cause various neoplastic lesions in chickens, including enlarged livers with hemangiomas and spleens with white nodules. Additionally, as the exposure time increased, the number of tumor cells that resembled myelocytes in the blood smears of infected chickens gradually increased. These results indicated that HB2020 on recombination with ALV subgroup E (ALV-E) and ALV-J could induce severe hemangiomas and myelocytomas. This inference might provide a molecular basis for further research about the pathogenicity of ALV and emphasize the need for control and prevention of avian leukosis.
Collapse
|
26
|
mRNA Metabolism in Health and Disease. Biomedicines 2022; 10:biomedicines10092262. [PMID: 36140363 PMCID: PMC9496247 DOI: 10.3390/biomedicines10092262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
|
27
|
Tibori K, Orosz G, Zámbó V, Szelényi P, Sarnyai F, Tamási V, Rónai Z, Mátyási J, Tóth B, Csala M, Kereszturi É. Molecular Mechanisms Underlying the Elevated Expression of a Potentially Type 2 Diabetes Mellitus Associated SCD1 Variant. Int J Mol Sci 2022; 23:ijms23116221. [PMID: 35682900 PMCID: PMC9181825 DOI: 10.3390/ijms23116221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022] Open
Abstract
Disturbances in lipid metabolism related to excessive food intake and sedentary lifestyle are among major risk of various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) has an essential role in these diseases, as it catalyzes the synthesis of unsaturated fatty acids, both supplying for fat storage and contributing to cellular defense against saturated fatty acid toxicity. Recent studies show that increased activity or over-expression of SCD1 is one of the contributing factors for type 2 diabetes mellitus (T2DM). We aimed to investigate the impact of the common missense rs2234970 (M224L) polymorphism on SCD1 function in transfected cells. We found a higher expression of the minor Leu224 variant, which can be attributed to a combination of mRNA and protein stabilization. The latter was further enhanced by various fatty acids. The increased level of Leu224 variant resulted in an elevated unsaturated: saturated fatty acid ratio, due to higher oleate and palmitoleate contents. Accumulation of Leu224 variant was found in a T2DM patient group, however, the difference was statistically not significant. In conclusion, the minor variant of rs2234970 polymorphism might contribute to the development of obesity-related metabolic disorders, including T2DM, through an increased intracellular level of SCD1.
Collapse
Affiliation(s)
- Kinga Tibori
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Péter Szelényi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Farkas Sarnyai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Zsolt Rónai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Judit Mátyási
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| |
Collapse
|