1
|
Liu X, Zhang W, Wei S, Liang X, Luo B. Targeting cuproptosis with nano material: new way to enhancing the efficacy of immunotherapy in colorectal cancer. Front Pharmacol 2024; 15:1451067. [PMID: 39691393 PMCID: PMC11649426 DOI: 10.3389/fphar.2024.1451067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Colorectal cancer has emerged as one of the predominant malignant tumors globally. Immunotherapy, as a novel therapeutic methodology, has opened up new possibilities for colorectal cancer patients. However, its actual clinical efficacy requires further enhancement. Copper, as an exceptionally crucial trace element, can influence various signaling pathways, gene expression, and biological metabolic processes in cells, thus playing a critical role in the pathogenesis of colorectal cancer. Recent studies have revealed that cuproptosis, a novel mode of cell death, holds promise to become a potential target to overcome resistance to colorectal cancer immunotherapy. This shows substantial potential in the combination treatment of colorectal cancer. Conveying copper into tumor cells via a nano-drug delivery system to induce cuproptosis of colorectal cancer cells could offer a potential strategy for eliminating drug-resistant colorectal cancer cells and vastly improving the efficacy of immunotherapy while ultimately destroy colorectal tumors. Moreover, combining the cuproptosis induction strategy with other anti-tumor approaches such as photothermal therapy, photodynamic therapy, and chemodynamic therapy could further enhance its therapeutic effect. This review aims to illuminate the practical significance of cuproptosis and cuproptosis-inducing nano-drugs in colorectal cancer immunotherapy, and scrutinize the current challenges and limitations of this methodology, thereby providing innovative thoughts and references for the advancement of cuproptosis-based colorectal cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiangdong Liu
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Wanqiu Zhang
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| | - Shaozhong Wei
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Gastrointestinal Oncology Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Liang
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
- Department of Abdominal Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Luo
- Department of Radiotherapy Center, Hubei Cancer Hospital, The Seventh Clinical School Affiliated of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, China
- Wuhan Clinical Research Center for Colorectal Cancer, Wuhan, China
| |
Collapse
|
2
|
Squitti R, Tondolo V, Pal A, Rizzo G, Arijit S, Mehboob H, di Veroli L, Catalano P, Ventura MD, Mastromoro G, Rossi L, Rongioletti M, De Luca A. Copper Dysmetabolism is Connected to Epithelial-Mesenchymal Transition: A Pilot Study in Colorectal Cancer Patients. Biol Trace Elem Res 2024:10.1007/s12011-024-04440-w. [PMID: 39557817 DOI: 10.1007/s12011-024-04440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
Colorectal cancer (CRC) is among the most diagnosed cancers worldwide, whose risk of mortality is associated with the development of metastases to the liver, lungs, and peritoneum. Of note, CRC is highly dependent on copper to sustain its proliferation and aggressiveness. Copper acts not only as a pivotal cofactor for several cuproproteins but also as an allosteric modulator of kinases essential to fulfill the epithelial-to-mesenchymal-transition (EMT), the main mechanism driving cancer cell spreading. System biology identified the APP and SOD1 genes among the top 10 genes shared between CRC and copper metabolism, as confirmed by the upregulation of the protein/mRNA levels of APP observed in CRC tissues. The significant increase of copper found in the sera of CRC patients was paralleled by a strong reduction of copper in the CRC tissues, in agreement with the decreased level of the high-affinity copper transporter CTR1 mRNA (SLC31A1) and LOXL2. As expected, in CRC tissues the mesenchymal marker fibronectin was significantly increased, whereas vimentin and vinculin protein levels were decreased compared to adjacent healthy mucosa. Interestingly, correlation analysis showed an interconnection between vinculin and both CCS and APP. A positive correlation was also observed between APP mRNA and both CDH1 and SOD1 mRNAs. Overall, we demonstrate a correlation between cell copper imbalance and CRC progression via EMT. The results obtained lay the scientific basis for further investigation to describe the kinetics of copper dysregulation during CRC progression and to identify the main cuproproteins involved in the modulation of EMT.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Viale Massenzio Masia, 26, 22100, Como, Novedrate, Italy.
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani, 741245, India
| | - Gianluca Rizzo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Samanta Arijit
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Hoque Mehboob
- Applied Bio-Chemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Laura di Veroli
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Piera Catalano
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Marco Della Ventura
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Gioia Mastromoro
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Ospedale Isola Tiberina-Gemelli Isola, 00186, Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
3
|
Noh D, Lee H, Lee S, Sun IC, Yoon HY. Copper-Based Nanomedicines for Cuproptosis-Mediated Effective Cancer Treatment. Biomater Res 2024; 28:0094. [PMID: 39430913 PMCID: PMC11486892 DOI: 10.34133/bmr.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
The recent discovery of cuproptosis, a novel copper-ion-induced cell death pathway, has suggested the novel therapeutic potential for treating heterogeneous and drug-resistant cancers. Currently, copper ionophore-based therapeutics have been designed to treat cancers, utilizing copper ions as a strategic tool to impede tumor proliferation and promote cellular demise. However, limitations of copper ionophore-based therapies include nontargeted delivery of copper ions, low tumor accumulation, and short half-life. Strategies to enhance specificity involve targeting intracellular cuproptosis mechanisms using nanotechnology-based drugs. Additionally, the importance of exploring combination therapies cannot be overstated, as they are a key strategy in improving the efficacy of cancer treatments. Recent studies have reported the anticancer effects of nanomedicines that can induce cuproptosis of cancer both in vitro and in vivo. These cuproptosis-targeted nanomedicines could improve delivery efficiency with the pharmacokinetic properties of copper ion, resulting in increasing cuproptosis-based anticancer effects. This review will summarize the intricate nexus between copper ion and carcinogenesis, examining the pivotal roles of copper homeostasis and its dysregulation in cancer progression and fatality. Furthermore, we will introduce the latest advances in cuproptosis-targeted nanomedicines for cancer treatment. Finally, the challenges in cuproptosis-based nanomedicines will be discussed for future development directions.
Collapse
Affiliation(s)
- Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy,
Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute,
Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School,
University of Science and Technology (UST), Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Jiaxuan Wu
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine University of Ottawa Ottawa Ontario Canada
- China-Canada Centre of Research for Digestive Diseases University of Ottawa Ottawa Ontario Canada
| | - Guang Ji
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| | - Yanqi Dang
- Institute of Digestive Diseases China-Canada Center of Research for Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine) Shanghai China
| |
Collapse
|
5
|
Gui W, Wang WX. Copper redox state in cells and aquatic organisms: Implication for toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135039. [PMID: 38941830 DOI: 10.1016/j.jhazmat.2024.135039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Copper (Cu) redox state has been an important issue in biology and toxicology research, but many research gaps remain to be explored due to the limitations in the detecting techniques. Herein, the regulation of Cu homeostasis, including absorption, translocation, utilization, storage, and elimination behavior is discussed. Cuproptosis, a newly identified type of cell death caused by excessive Cu accumulation, which results in the aggregation of DLAT protein or the loss of Fe-S cluster and finally proteotoxic stress, is reviewed. Several longstanding mysteries of diseases such as Wilson disease and toxic effects, may be attributed to cuproptosis. Furthermore, we review the advanced detection methods and application of Cu(I) and Cu(II), especially the in-situ imaging techniques such as XANES, and chemosensors. Most of the existing studies using these detection techniques focus on the bioaccumulation and toxicity of Cu(I) and Cu(II) in cells and aquatic organisms. Finally, it will be important to identify the roles of Cu(I) and Cu(II) in the growth, development, and diseases of organisms, as well as the relationship between bioaccumulation and toxicity of Cu(I) and Cu(II) in cellular and aquatic toxicology.
Collapse
Affiliation(s)
- Wanying Gui
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
6
|
Joshi A, Mandal R. Review Article on Molecular Basis of Zinc and Copper Interactions in Cancer Physiology. Biol Trace Elem Res 2024:10.1007/s12011-024-04356-5. [PMID: 39215955 DOI: 10.1007/s12011-024-04356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Various clinical manifestations associated with measurable abnormalities of Zn and Cu in serum and tissue were determined in Cancer-Patients (CP), and therefore, these two metals are drawing more and more attention presently than ever before. Cancer is a disease of uncontrolled-abnormal-cell-division with invasion-potential which was exhibited to occur due to dys-regulation/dys-homeostasis of fundamental-biological-pathways (FBP) including antioxidant-enzyme-defense-system, anti-inflammatory and immune-systems, and DNA-damage-repair-system in the human-body resulting in generation of chronic-oxidative-stress induced DNA-damage and gene-mutations, inflammation and compromised immune-system, tumor-induced increased angiogenesis, and inhibition of apoptosis processes. Zn and Cu were recognized to be the most crucial components of FBP and imbalance in Zn/Cu ratios in CP asserted to generate chronic toxicity in human body through various mechanisms including increased chronic oxidative stress linked compromised DNA integrity and gene mutations due to malfunctioning of DNA damage repair enzymes; increased angiogenesis process due to Zn- and Cu-binding proteins metallothionein and ceruloplasmin-induced enhanced expression of tumor growth factors; and elevation in inflammatory response which was further shown to down/upregulate gene expression of multiple Zn transporter proteins leading to dys-homeostasis of intracellular Zn concentrations, and it was determined to disturb the equilibrium between cell growth and division, proliferation, differentiation, and apoptosis processes which lead to cancer progression. Moreover, Zn was reported to affect matrix metalloproteinase activity and influence immune system cells to respond differently to different cytokines and enhance immune-suppressive effects accelerating the angiogenesis, invasion, and metastasis potential in cancer. Further, the most significant use of serum Cu/Zn ratio was recommended in clinical diagnosis, prognosis, tumor stage, patient survival, and cancer follow-up studies which need further investigations to elucidate and explore their roles in cancer physiology for clinical perspective.
Collapse
Affiliation(s)
- Amit Joshi
- PG Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, UT, India
| | - Reshu Mandal
- PG Department of Zoology, Sri Guru Gobind Singh College, Chandigarh, UT, India.
| |
Collapse
|
7
|
Wang Y, Pei P, Yang K, Guo L, Li Y. Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies. Clin Transl Med 2024; 14:e1724. [PMID: 38804588 PMCID: PMC11131360 DOI: 10.1002/ctm2.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Copper, a trace element and vital cofactor, plays a crucial role in the maintenance of biological functions. Recent evidence has established significant correlations between copper levels, cancer development and metastasis. The strong redox-active properties of copper offer both benefits and disadvantages to cancer cells. The intestinal tract, which is primarily responsible for copper uptake and regulation, may suffer from an imbalance in copper homeostasis. Colorectal cancer (CRC) is the most prevalent primary cancer of the intestinal tract and is an aggressive malignant disease with limited therapeutic options. Current research is primarily focused on the relationship between copper and CRC. Innovative concepts, such as cuproplasia and cuproptosis, are being explored to understand copper-related cellular proliferation and death. Cuproplasia is the regulation of cell proliferation that is mediated by both enzymatic and nonenzymatic copper-modulated activities. Whereas, cuproptosis refers to cell death induced by excess copper via promoting the abnormal oligomerisation of lipoylated proteins within the tricarboxylic acid cycle, as well as by diminishing the levels of iron-sulphur cluster proteins. A comprehensive understanding of copper-related cellular proliferation and death mechanisms offers new avenues for CRC treatment. In this review, we summarise the evolving molecular mechanisms, ranging from abnormal intracellular copper concentrations to the copper-related proteins that are being discovered, and discuss the role of copper in the pathogenesis, progression and potential therapies for CRC. Understanding the relationship between copper and CRC will help provide a comprehensive theoretical foundation for innovative treatment strategies in CRC management.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Kai Yang
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lingchuan Guo
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
9
|
Zhou C, Jin L, Yu J, Gao Z. Integrated analysis identifies cuproptosis-related gene DLAT and its competing endogenous RNAs network to predict the prognosis of pancreatic adenocarcinoma patients. Medicine (Baltimore) 2024; 103:e37322. [PMID: 38428843 PMCID: PMC10913044 DOI: 10.1097/md.0000000000037322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor with poor prognosis. However, the relationship between cuproptosis-related genes (CRGs) and its competing endogenous RNA (ceRNA) network with the prognosis of PAAD patients remains unclear. To investigate this relationship, we calculated the difference in CRGs between PAAD tissues and normal tissues using the 'limma' R package. Additionally, we employed least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a prognostic signature for CRGs. Survival analysis of patients with PAAD was performed using Kaplan-Meier analysis. Furthermore, we used bioinformatics tools to screen for CRGs-related MicroRNA (miRNA) and lncRNAs. To validate these findings, we conducted real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8, colony formation, and Transwell assays to assess the effect of DLAT in vitro. Our results revealed a cuproptosis-related prognostic signature consisting of 3 prognostic genes (DLAT, LIAS, and LIPT1). Notably, patients with a high-risk score for the CRGs signature exhibited poor prognosis in terms of overall survival (OS) (P < .05). The receiver operating characteristic (ROC) curve was used to evaluate the prognostic signature of CRGs. The results showed that the 1-year, 3-year, and 5-year area under the curve values for predicting OS were 0.62, 0.66, and 0.79, respectively. Additionally, the CRGs-related ceRNA network revealed the regulatory axis of LINC00857/has-miR-1179/DLAT in PAAD. In vitro experiments demonstrated that knockdown of LINC00857 and DLAT inhibited the growth and invasion of PAAD cells. This study identified a CRG-related prognostic signature consisting of 3 biomarkers (DLAT, LIAS, and LIPT1) for PAAD. Furthermore, ceRNA network analysis suggested the involvement of the LINC00857/has-miR-1179/DLAT axis in the development of PAAD. Overall, this study provides theoretical support for the investigation of diagnostic and prognostic biomarkers as well as potential therapeutic targets in PAAD.
Collapse
Affiliation(s)
- Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Zhengchao Gao
- Department of Orthopaedics, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
10
|
Squitti R, Pal A, Dhar A, Shamim MA, Ventriglia M, Simonelli I, Rani I, Sharma A, Rizzo G, Tondolo V, Goswami K, Rongioletti M. Serum copper status of patients with colorectal cancer: A systematic review and meta-analysis. J Trace Elem Med Biol 2024; 82:127370. [PMID: 38159434 DOI: 10.1016/j.jtemb.2023.127370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and a public health problem. Several clinical studies have shown that copper (Cu) is involved in carcinogenesis, possibly via cuproptosis, a new form of programmed cell death, but the conclusions from published reports are inconsistent. This study aimed at evaluating the potential of Cu dysregulation as a CRC susceptibility factor. METHODS In this systematic review and meta-analysis, we searched Cochrane Library, EBSCOhost, EMBASE, ProQuest, PubMed/MEDLINE, Scopus, and Web of Science for studies reporting serum Cu concentrations in CRC patients and controls from articles published till June 2023. The studies included reported measurements of serum/plasma/blood Cu levels. Meta-analyses were performed as well as study quality, heterogeneity, and small study effects were assessed. Based on a random effects model, summary standardized mean differences (SMDs) and the corresponding 95% confidence intervals (95% CIs) were applied to compare the levels of Cu between CRC patients and controls. RESULTS 26 studies with a pooled total of9628 participants and 2578 CRC cases were included. The pooled SMD was equal to 0.85 (95% CIs -0.44; 2.14) showing that the CRC patients had higher mean Cu levels than the control subjects, but the difference was not significant (p = 0.185) and the heterogeneity was very high, I2 = 97.9% (95% CIs: 97.5-98.3%; p < 0.001). CONCLUSION The pooled results were inconclusive, likely due to discordant results and inaccuracy in reporting data of some studies; further research is needed to establish whether Cu dysregulation might contribute to the CRC risk and whether it might reflect different CRC grades.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy.
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Aninda Dhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | | | - Mariacarla Ventriglia
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Ilaria Simonelli
- Clinical Research Centre, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Ambala, India
| | - Aaina Sharma
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Gianluca Rizzo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy; Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Mauro Rongioletti
- Department of Laboratory Science, Ospedale Isola Tiberina - Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
11
|
Springer C, Humayun D, Skouta R. Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy. Cancers (Basel) 2024; 16:647. [PMID: 38339398 PMCID: PMC10854864 DOI: 10.3390/cancers16030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Copper, an essential element for various biological processes, demands precise regulation to avert detrimental health effects and potential cell toxicity. This paper explores the mechanisms of copper-induced cell death, known as cuproptosis, and its potential health and disease implications, including cancer therapy. Copper ionophores, such as elesclomol and disulfiram, increase intracellular copper levels. This elevation triggers oxidative stress and subsequent cell death, offering potential implications in cancer therapy. Additionally, copper ionophores disrupt mitochondrial respiration and protein lipoylation, further contributing to copper toxicity and cell death. Potential targets and biomarkers are identified, as copper can be targeted to those proteins to trigger cuproptosis. The role of copper in different cancers is discussed to understand targeted cancer therapies using copper nanomaterials, copper ionophores, and copper chelators. Furthermore, the role of copper is explored through diseases such as Wilson and Menkes disease to understand the physiological mechanisms of copper. Exploring cuproptosis presents an opportunity to improve treatments for copper-related disorders and various cancers, with the potential to bring significant advancements to modern medicine.
Collapse
Affiliation(s)
- Chloe Springer
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Danish Humayun
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
12
|
Gao S, Zhang H, Zhang X, Wang J, Bai W, Jiang B. COX19 Is a New Target of MACC1 and Promotes Colorectal Cancer Progression by Regulating Copper Transport in Mitochondria. J Nutr 2024; 154:381-394. [PMID: 38141772 DOI: 10.1016/j.tjnut.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Recent studies have demonstrated that copper (Cu) plays an important role in the progression of tumor diseases. Metastasis associated with colon cancer protein 1 (MACC1) promotes the transcription and expression of various tumor-related genes. Cytochrome c oxidase (COX) 19, present in the cytoplasm and intermembrane space of mitochondria, may transport Cu within the mitochondria. However, the mechanism through which MACC1 regulates the Cu homeostasis mediated by COX19 remains unclear. OBJECTIVES The aim of this study was to elucidate the mechanism through which MACC1 initiates the transcription and expression of COX19, and promotes malignant behavior in tumor cells. METHODS Immunohistochemistry, western blotting, and real-time polymerase chain reaction (PCR) analyses were conducted to analyze the expression of MACC1 and COX19 proteins and genes in tumor and normal tissues. RNA-chromatin immunoprecipitation was used to detect the transcriptional initiation of COX19 by MACC1. The effects of MACC1 and COX19 on mitochondrial activity were determined using an ATP assay kit and Cytochrome c Oxidase Assay Kit. A Cell Counting Kit-8 kit was used to detect the effect of high-dose Cu or overexpression of MACC1 and COX19 on tumor cell proliferation. A xenograft mouse model was used to analyze the effect of the COX19 overexpression on the malignant behavior of the tumors. RESULTS Cu enhanced the proliferation, invasion, and migration and inhibited apoptosis of SW480 cells. MACC1 was highly expressed in colorectal cancer tissues and activated the expression of COX19 by binding to its promoter region of COX19. The overexpression of COX19 increased mitochondrial Cu content and enhanced the activity of mitochondrial COX and ATP content, and inhibited apoptosis, promoted tumor growth of mice. CONCLUSIONS Our results indicate that COX19 functions as a target gene of MACC1 and regulates mitochondrial activity and promotes the progression of colorectal cancer. MACC1/COX19 may provide a novel therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, P.R. China.
| | - Hong Zhang
- Medical Department, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, P.R. China.
| | - Xiaodong Zhang
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, P.R. China.
| | - Jian Wang
- Department of General Surgery, Bethune Hospital of Shanxi Province, Taiyuan 030000, P.R. China
| | - Wenqi Bai
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, P.R. China
| | - Bo Jiang
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, P.R. China
| |
Collapse
|
13
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
14
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Cuproptosis: emerging biomarkers and potential therapeutics in cancers. Front Oncol 2023; 13:1288504. [PMID: 38023234 PMCID: PMC10662309 DOI: 10.3389/fonc.2023.1288504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The sustenance of human life activities depends on copper, which also serves as a crucial factor for vital enzymes. Under typical circumstances, active homeostatic mechanisms keep the intracellular copper ion concentration low. Excess copper ions cause excessive cellular respiration, which causes cytotoxicity and cell death as levels steadily rise above a threshold. It is a novel cell death that depends on mitochondrial respiration, copper ions, and regulation. Cuproptosis is now understood to play a role in several pathogenic processes, including inflammation, oxidative stress, and apoptosis. Copper death is a type of regulatory cell death(RCD).Numerous diseases are correlated with the development of copper homeostasis imbalances. One of the most popular areas of study in the field of cancer is cuproptosis. It has been discovered that cancer angiogenesis, proliferation, growth, and metastasis are all correlated with accumulation of copper ions. Copper ion concentrations can serve as a crucial marker for cancer development. In order to serve as a reference for clinical research on the product, diagnosis, and treatment of cancer, this paper covers the function of copper ion homeostasis imbalance in malignant cancers and related molecular pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Bian C, Zheng Z, Su J, Chang S, Yu H, Bao J, Xin Y, Jiang X. Copper homeostasis and cuproptosis in tumor pathogenesis and therapeutic strategies. Front Pharmacol 2023; 14:1271613. [PMID: 37767404 PMCID: PMC10520736 DOI: 10.3389/fphar.2023.1271613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Copper is an indispensable micronutrient for the development and replication of all eukaryotes, and its redox properties are both harmful and beneficial to cells. An imbalance in copper homeostasis is thought to be involved in carcinogenesis. Importantly, cancer cell proliferation, angiogenesis, and metastasis cannot be separated from the effects of copper. Cuproposis is a copper-dependent form of cell death that differs from other existing modalities of regulatory cell death. The role of cuproptosis in the pathogenesis of the nervous and cardiovascular systems has been widely studied; however, its impact on malignant tumors is yet to be fully understood from a clinical perspective. Exploring signaling pathways related to cuproptosis will undoubtedly provide a new perspective for the development of anti-tumor drugs in the future. Here, we systematically review the systemic and cellular metabolic processes of copper and the regulatory mechanisms of cuproptosis in cancer. In addition, we discuss the possibility of targeting copper ion drugs to prolong the survival of cancer patients, with an emphasis on the most representative copper ionophores and chelators. We suggest that attention should be paid to the potential value of copper in the treatment of specific cancers.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
16
|
Stokowa-Sołtys K, Kierpiec K, Szczerba K, Wieczorek R. Can bacteria F. nucleatum be actively involved in colon cancer progression via a radical mediated mechanism? J Inorg Biochem 2023; 246:112307. [PMID: 37406386 DOI: 10.1016/j.jinorgbio.2023.112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Outer membrane proteins of Fusobacterium nucleatum, a cancer‑leading bacteria, are considered as the factors responsible for its pathogenicity. Among them, homotrimeric autotransporter protein YadA (Yersinia adhesin A) is an important virulence factor also found in the outer membrane of pathogenic Yersinia species. In this paper, the structure and stability of certain Cu(II) complexes with YadA fragments were investigated using both, experimental and theoretical methods. Potentiometry, UV-Vis, CD, EPR, and calculations at the density functional theory (DFT) level were applied to determine the metal ion coordination sphere. Moreover, the complexes ability to DNA cleavage and reactive oxygen species (ROS) production was studied. We have shown that copper(II) complexes can cleave DNA by 1O2, O2•- and •OH, which are formed in the studied systems. However, the results of electrophoretic experiments revealed that complexes cleave DNA less effectively than free copper(II) ions. Therefore, the presence of studied peptides may prevent DNA from a Cu(II)-induced damage to some extent.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Karolina Kierpiec
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Klaudia Szczerba
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
17
|
Lubiński J, Lener MR, Marciniak W, Pietrzak S, Derkacz R, Cybulski C, Gronwald J, Dębniak T, Jakubowska A, Huzarski T, Matuszczak M, Pullella K, Sun P, Narod SA. Serum Essential Elements and Survival after Cancer Diagnosis. Nutrients 2023; 15:nu15112611. [PMID: 37299574 DOI: 10.3390/nu15112611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In a prospective study, we measured the associations between three serum elements (Se, Zn and Cu) and the prognosis of 1475 patients with four different types of cancer (breast, prostate, lung and larynx) from University Hospitals in Szczecin, Poland. The elements were measured in serum taken after diagnosis and prior to treatment. Patients were followed from the date of diagnosis until death from any cause or until the last follow-up date (mean years of follow-up: 6.0-9.8 years, according to site). Kaplan-Meier curves were constructed for all cancers combined and for each cancer separately. Age-adjusted hazard ratios (HRs) were estimated using Cox regression. The outcome was all-cause mortality. A Se level in the highest quartile was also associated with a reduced mortality (HR = 0.66; 95%CI 0.49-0.88; p = 0.005) in all-cause mortality for all cancers combined. Zn level in the highest quartile was also associated with reduced mortality (HR = 0.55; 95%CI 0.41-0.75; p = 0.0001). In contrast, a Cu level in the highest quartile was associated with an increase in mortality (HR = 1.91; 95%CI 1.56-2.08; p = 0.0001). Three serum elements-selenium, zinc and copper-are associated with the prognosis of different types of cancer.
Collapse
Affiliation(s)
- Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Marcin R Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Katherine Pullella
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
| | - Ping Sun
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
| | - Steven A Narod
- Women's College Research Institute, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| |
Collapse
|
18
|
Wu Y, Wen X, Xia Y, Yu X, Lou Y. LncRNAs and regulated cell death in tumor cells. Front Oncol 2023; 13:1170336. [PMID: 37313458 PMCID: PMC10258353 DOI: 10.3389/fonc.2023.1170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Regulated Cell Death (RCD) is a mode of cell death that occurs through drug or genetic intervention. The regulation of RCDs is one of the significant reasons for the long survival time of tumor cells and poor prognosis of patients. Long non-coding RNAs (lncRNAs) which are involved in the regulation of tumor biological processes, including RCDs occurring on tumor cells, are closely related to tumor progression. In this review, we describe the mechanisms of eight different RCDs which contain apoptosis, necroptosis, pyroptosis, NETosis, entosis, ferroptosis, autosis and cuproptosis. Meanwhile, their respective roles in the tumor are aggregated. In addition, we outline the literature that is related to the regulatory relationships between lncRNAs and RCDs in tumor cells, which is expected to provide new ideas for tumor diagnosis and treatment.
Collapse
|
19
|
Xu C, Chen A, Mao C, Cui B. Construction of prognostic risk model of bladder cancer based on cuproptosis-related long non-coding RNAs. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:139-147. [PMID: 37283097 PMCID: PMC10409915 DOI: 10.3724/zdxbyxb-2022-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/20/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To construct a prognosis risk model based on long noncoding RNAs (lncRNAs) related to cuproptosis and to evaluate its application in assessing prognosis risk of bladder cancer patients. METHODS RNA sequence data and clinical data of bladder cancer patients were downloaded from the Cancer Genome Atlas database. The correlation between lncRNAs related to cuproptosis and bladder cancer prognosis was analyzed with Pearson correlation analysis, univariate Cox regression, Lasso regression, and multivariate Cox regression. Then a cuproptosis-related lncRNA prognostic risk scoring equation was constructed. Patients were divided into high-risk and low-risk groups based on the median risk score, and the immune cell abundance between the two groups were compared. The accuracy of the risk scoring equation was evaluated using Kaplan-Meier survival curves, and the application of the risk scoring equation in predicting 1, 3 and 5-year survival rates was evaluated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression were used to screen for prognostic factors related to bladder cancer patients, and a prognostic risk assessment nomogram was constructed, the accuracy of which was evaluated with calibration curves. RESULTS A prognostic risk scoring equation for bladder cancer patients was constructed based on nine cuproptosis-related lncRNAs. Immune infiltration analysis showed that the abundances of M0 macrophages, M1 macrophages, M2 macrophages, resting mast cells and neutrophils in the high-risk group were significantly higher than those in the low-risk group, while the abundances of CD8+ T cells, helper T cells, regulatory T cells and plasma cells in the low-risk group were significantly higher than those in the high-risk group (all P<0.05). Kaplan-Meier survival curve analysis showed that the total survival and progression-free survival of the low-risk group were longer than those of the high-risk group (both P<0.01). Univariate and multivariate Cox analysis showed that the risk score, age and tumor stage were independent factors for patient prognosis. The ROC curve analysis showed that the area under the curve (AUC) of the risk score in predicting 1, 3 and 5-year survival was 0.716, 0.697 and 0.717, respectively. When combined with age and tumor stage, the AUC for predicting 1-year prognosis increased to 0.725. The prognostic risk assessment nomogram for bladder cancer patients constructed based on patient age, tumor stage, and risk score had a prediction value that was consistent with the actual value. CONCLUSIONS A bladder cancer patient prognosis risk assessment model based on cuproptosis-related lncRNA has been successfully constructed in this study. The model can predict the prognosis of bladder cancer patients and their immune infiltration status, which may also provide a reference for tumor immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| | - Aqin Chen
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Chaoming Mao
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Bing Cui
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China.
| |
Collapse
|
20
|
Li D, Qu G, Ling S, Sun Y, Cui Y, Yang Y, Cao X. A cuproptosis-related lncRNA signature to predict prognosis and immune microenvironment of colon adenocarcinoma. Sci Rep 2023; 13:6284. [PMID: 37072493 PMCID: PMC10113217 DOI: 10.1038/s41598-023-33557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Cuproptosis is a novel cell death modality but its regulatory role in the colon cancer remains obscure. This study is committed to establishing a cuproptosis-related lncRNA (CRL) signature to forecast the prognosis for colon adenocarcinoma (COAD). The Cancer Genome Atlas (TCGA) samples were randomly divided into training and validation cohorts. LASSO-COX analysis was performed to construct a prognostic signature consisting of five CRLs (AC015712.2, ZEB1-AS1, SNHG26, AP001619.1, and ZKSCAN2-DT). We found the patients with high-risk scores suffered from poor prognosis in training cohort (p < 0.001) and validation cohort (p = 0.004). Nomogram was created based on the 5-CRL signature. Calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) demonstrated the nomogram performed well in 1‑, 3‑, and 5‑year overall survival (OS). Subsequently, we observed increased infiltration of multiple immune cells and upregulated expression of immune checkpoints and RNA methylation modification genes in high-risk patients. Additionally, gene set enrichment analysis (GSEA) revealed two tumor-related pathways, including MAPK and Wnt signaling pathways. Finally, we found AKT inhibitors, all-trans retinoic acid (ATRA), camptothecin, and thapsigargin had more sensitivity to antitumor therapy in high-risk patients. Collectively, this CRL signature is promising for the prognostic prediction and precise therapy of COAD.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Guangzhen Qu
- Department of Interventional Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shen Ling
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Wang X, Zuo X, Hu X, Liu Y, Wang Z, Chan S, Sun R, Han Q, Yu Z, Wang M, Zhang H, Chen W. Identification of cuproptosis-based molecular subtypes, construction of prognostic signature and characterization of immune landscape in colon cancer. Front Oncol 2023; 13:927608. [PMID: 37007145 PMCID: PMC10064275 DOI: 10.3389/fonc.2023.927608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundCuproptosis is a newly discovered form of cell death induced by targeting lipoacylated proteins involved in the tricarboxylic acid cycle. However, the roles of cuproptosis-related genes (CRGs) in the clinical outcomes and immune landscape of colon cancer remain unknown.MethodsWe performed bioinformatics analysis of the expression data of 13 CRGs identified from a previous study and clinical information of patients with colon cancer obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Colon cancer cases were divided into two CRG clusters and prognosis-related differentially expressed genes. Patient data were separated into three corresponding distinct gene clusters, and the relationships between the risk score, patient prognosis, and immune landscape were analyzed. The identified molecular subtypes correlated with patient survival, immune cells, and immune functions. A prognostic signature based on five genes was identified, and the patients were divided into high- and low-risk groups based on the calculated risk score. A nomogram model for predicting patient survival was developed based on the risk score and other clinical features.ResultsThe high-risk group showed a worse prognosis, and the risk score was related to immune cell abundance, microsatellite instability, cancer stem cell index, checkpoint expression, immune escape, and response to chemotherapeutic drugs and immunotherapy. Findings related to the risk score were validated in the imvigor210 cohort of patients with metastatic urothelial cancer treated with anti-programmed cell death ligand 1.ConclusionWe demonstrated the potential of cuproptosis-based molecular subtypes and prognostic signatures for predicting patient survival and the tumor microenvironment in colon cancer. Our findings may improve the understanding of the role of cuproptosis in colon cancer and lead to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Liu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qijun Han
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huabing Zhang
- The First Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Huabing Zhang, ; Wei Chen,
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Huabing Zhang, ; Wei Chen,
| |
Collapse
|
22
|
Zheng Y, Wei K, Gao Y, Zhou Z, Zheng X, Li J, Qi J. Comparative evaluation of the structure and antitumor mechanism of mononuclear and trinucleated thiosemicarbazone Cu(II) complexes. J Inorg Biochem 2023; 240:112116. [PMID: 36592511 DOI: 10.1016/j.jinorgbio.2022.112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The ratio of ligand to Cu(II) ions has an essential effect on the geometrical configuration and anti-tumour activity of metal-based complexes. In this work, we synthesised two Cu(II) thiosemicarbazone complexes, namely, [Cu(L)(Cl)] (C1) and [Cu3(L)2(Cl)4] (C2), by controlling the ratio of Cu(II) ion to ligand, to evaluate their anti-tumour activity. The ability of C1 to catalyze hydrogen peroxide to produce reactive oxygen species (ROS) was significantly higher than that of Cu(II) ion. Moreover, the bridge of Cu(II) and two molecules generated a new complex (C2), which, in contrast to C1, enhanced the generation of Fenton-like-triggered ROS. Consequently, the produced ROS depleted reduced glutathione, caused oxidative cell stress and promoted apoptosis through mitochondrial apoptotic pathways. In addition, C2 exhibited better tumour suppression than C1 in a nude mouse tumour xenograft model.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Kai Wei
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ziyan Zhou
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xinhua Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jiuling Li
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
23
|
Jiang Z, Sha G, Zhang W, Zhang Z, Liu T, Wang D, Tang D. The huge potential of targeting copper status in the treatment of colorectal cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03107-7. [PMID: 36781599 DOI: 10.1007/s12094-023-03107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Colorectal cancer (CRC) commonly leads to cancer deaths and is often diagnosed at advanced stages. It also faces difficulties due to the poor results of conventional treatments such as surgery, chemotherapy, and radiotherapy. Copper is a mineral nutrient whose intrinsic properties have a two-way effect on the production and treatment of cancer. Copper's redox properties allow it to be used in developing anti-cancer drugs, while its potential toxicity leads to oxidative stress and even cancer. Copper status is closely related to colorectal tumors' proliferation and metastasis. The study of the mechanisms of copper homeostasis, cuproplasia, and cuproptosis due to altered copper status plays a crucial role in developing anticancer drugs. Therefore, targeting alteration of copper status becomes a potential option for treating colorectal cancer. This review summarizes the mechanisms by which altered copper status causes CRC progression and emphasizes the potential of regulating copper status in treating CRC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
24
|
Yang G, Wang H, Sun B. Construction of cuproptosis‑associated prognostic signature in colon adenocarcinoma based on bioinformatics and RT‑qPCR analysis. Oncol Lett 2023; 25:91. [PMID: 36817047 PMCID: PMC9932052 DOI: 10.3892/ol.2023.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Colon adenocarcinoma (COAD) is the most common pathological subtype of colon cancer with a high degree of malignancy. Cuproptosis is a newly discovered copper-dependent cell death pattern distinguished from all the other known programmed cell death. Hence, it can be used as a potential therapeutic target for cancer. The present study aimed to clarify the relationship between cuproptosis and prognosis of COAD. The variations of 12 cuproptosis-associated genes based on 623 patients with COAD were comprehensively identified. It was found that 8 out of 12 were differentially expressed in tumors and normal tissues and CDKN2A showed a higher prognostic value. Therefore, two molecular subtypes were explored and the subtype A, with higher expression of cuproptosis-associated genes, showed more enrichment of immune pathways and survival advantage over those with lower cuproptosis-associated genes expression. The risk score and a nomogram predicting pattern were constructed to quantify a single patient and the risk score could serve as an independent prognostic factor by multivariate Cox regression analysis (P<0.001, HR: 1.350, 95% CI: 1.189-1.534). The expression levels of key prognostic genes (PMM2, ACOX1, KDM3A, HSPB1, PPARGC1A, UPK3B and EPHB2) was analyzed by HCT-116 colon cancer cells and HT-29 colorectal cancer cells using reverse transcription-quantitative PCR. The high-risk group, characterized by higher immune infiltration, increased microsatellite instability-high, high tumor mutation burden and high expression level of immune checkpoints, indicated higher drug sensitivity. In conclusion, our analysis confirms the potential role of cuproptosis-associated genes in the prognosis of COAD and it will provide new ideas for immunotherapy.
Collapse
Affiliation(s)
- Guang Yang
- Medical Experimental Center, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China,Correspondence to: Dr Guang Yang, Medical Experimental Center, School of Medicine, Jianghan University, 8 Triangle Lake Road, Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, P.R. China, E-mail:
| | - Haiping Wang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Binlian Sun
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China,Dr Binlian Sun, Institute of Biomedical Sciences, School of Medicine, Jianghan University, 8 Triangle Lake Road, Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, P.R. China, E-mail:
| |
Collapse
|
25
|
Lei L, Tan L, Sui L. A novel cuproptosis-related gene signature for predicting prognosis in cervical cancer. Front Genet 2022; 13:957744. [PMID: 36092887 PMCID: PMC9453033 DOI: 10.3389/fgene.2022.957744] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose: Cuproptosis, a form of copper-induced cell death, can be a promising therapeutic target for refractory cancers. Hence, we conducted this research to explore the association between cuproptosis and prognosis in cervical cancer (CC).Methods: For constructing a prognostic signature based on cuproptosis-related genes from TCGA database, the least absolute shrinkage and selection operator Cox regression was utilized. The GSE44001 cohort was utilized for validation.Results: A total of nine cuproptosis-related genes showed distinct expression in CC and normal samples in TCGA-GTEx cohort. Two risk groups were identified based on a seven-gene signature. A significant decrease in overall survival was observed in the high-risk group (p < 0.001). The risk score (HR = 2.77, 95% CI = 1.58–4.86) was an autocephalous predictor with a better predictive ability than the clinical stage. Functional analysis indicated that immune activities were suppressed more in the high-risk group than in the low-risk group. A total of 11 candidate compounds targeting the signature were identified.Conclusion: A total of seven cuproptosis-related gene signatures were constructed to predict prognosis and propose a new therapeutic target for patients with CC.
Collapse
Affiliation(s)
- Lei Lei
- Cervical and Vaginal Precancerous Lesion Diagnosis and Treatment, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Liao Tan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Sui
- Cervical and Vaginal Precancerous Lesion Diagnosis and Treatment, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Long Sui,
| |
Collapse
|