1
|
Shevtsov M, Pitkin E, Combs SE, Yudintceva N, Nazarov D, Meulen GVD, Preucil C, Akkaoui M, Pitkin M. Biocompatibility Analysis of the Silver-Coated Microporous Titanium Implants Manufactured with 3D-Printing Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1876. [PMID: 39683264 PMCID: PMC11643975 DOI: 10.3390/nano14231876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections. In the current study, a 1-µm thick silver coating was prepared on the surface of a 3D-printed microporous titanium alloy with physical vapor deposition (PVD), with a final silver content of 1.00 ± 02 mg/cm2. Cell viability was evaluated with an MTT assay of MC3T3-E1 osteoblasts and human dermal fibroblasts cultured on the surface of the implants, and showed low cytotoxicity for cells during the 14-day follow-up period. Quantitative real-time polymerase chain reaction (RT-PCR) analysis of the relative gene expression of the extracellular matrix components (fibronectin, vitronectin, type I collagen) and cell adhesion markers (α2, α5, αV, β1 integrins) in dermal fibroblasts showed that cell adhesion was not reduced by the silver coating of the microporous implants. An RT-PCR analysis of gene expression related to osteogenic differentiation, including TGF-β1, SMAD4, osteocalcin, osteopontin, and osteonectin in MC3T3-E1 osteoblasts, demonstrated that silver coating did not reduce the osteogenic activity of cells and, to the contrary, enhanced the activity of the TGF-β signaling pathway. For representative sample S5 on day 14, the gene expression levels were 7.15 ± 0.29 (osteonectin), 6.08 ± 0.12 (osteocalcin), and 11.19 ± 0.77 (osteopontin). In conclusion, the data indicate that the silver coating of the microporous titanium implants did not reduce the biointegrative or osteoinductive properties of the titanium scaffold, a finding that argues in favor of applying this coating in designing personalized osseointegrated implants.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Emil Pitkin
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia;
| | - Denis Nazarov
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | | | - Chris Preucil
- Movora, St. Augustine, FL 32095, USA; (G.V.D.M.); (C.P.)
| | | | - Mark Pitkin
- Department of Orthopaedics and Rehabilitation Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Poly-Orth International, Sharon, MA 02067, USA
| |
Collapse
|
2
|
AlHazmi B. Rehabilitation of Atrophied Maxillary Bones With Short-Splinted Implants in a Periodontitis Patient: A Six-Year Follow-Up Case Report. Cureus 2024; 16:e73514. [PMID: 39669867 PMCID: PMC11636027 DOI: 10.7759/cureus.73514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
This case report aims to report the successful use of a short-splinted implant in a patient with a history of periodontal disease. Two implants were used to rehabilitate severe atrophied alveolar ridge with fixed prosthesis. Despite the left posterior ridge being weakened by maxillary sinus pneumatization and bone remodeling after tooth extraction, no bone grafts nor sinus osteotomy procedures were needed for the rehabilitation surgery. The report examines the use of Roxolid® SLActive® surface implants (Straumann Group, Basel, Switzerland) for the restoration of missing posterior teeth in the atrophied alveolar ridge. These implants offer improved mechanical properties that enhance their durability and dependability, which increase their survival rate. This case report demonstrates that the use of short-splinted implants can effectively reduce morbidity rates and the risk of implant failure. Additionally, the simplified rehabilitation surgery involving a short implant, when combined with proper surgical and prosthetic management, appears to be a viable treatment option that is both cost-effective and less time-consuming for rehabilitating atrophied maxillary ridges. It is important to emphasize that rigorous periodontal maintenance, which includes regular professional follow-ups and effective oral hygiene practices, is essential for achieving optimal health of both soft and hard oral tissues around dental implants.
Collapse
Affiliation(s)
- Bann AlHazmi
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh, SAU
| |
Collapse
|
3
|
Perdomo SJ, Fajardo CE, Cardona-Mendoza A. Laminin 332 functionalized surface improve implant roughness and oral keratinocyte bioactivity. Heliyon 2024; 10:e34507. [PMID: 39170330 PMCID: PMC11336357 DOI: 10.1016/j.heliyon.2024.e34507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The biological seal (BS) at the implant-tissue interface is essential for the success of dental implants (DIs), and the absence of a proper BS can lead to peri-implantitis. The basement membrane (BM) and junctional epithelium are critical for sealing the peri-implant mucosa, and laminin 332 is an important protein in binding the epithelium to the implant surface. The aim of this study was to evaluate the response of oral keratinocytes to titanium dental implant surfaces biofunctionalized with laminin 332. Design The dental implant surface was treated with a piranha solution to create hydroxyl (OH) groups, facilitating biofunctionalization with laminin 332. The modified surface underwent scanning electron microscopy, surface roughness evaluation, and chemical composition analysis. Human keratinocytes from the Cal-27 line were then cultured on the modified implants for 24 and 48 h to assess viability, morphology, cytokine secretion, and mRNA expression of tissue repair-associated genes. Results The results showed that laminin 332 biofunctionalization of the implant surface resulted in lower values of Ra, Rq and positive surface roughness parameters Rsk, Rku and Rv. The elemental composition showed an increase in nitrogen and carbon content corresponding to protein binding. The biofunctionalized surfaces did not affect cell viability and promoted cytokine secretion (IL-1a and IL-8) and a significant increase (p < 0.05) in MCP-1, EGF, FGF, TGF and VEGF gene expression compared to the control. Conclusion In conclusion, laminin 332 coating Ti implants was shown to be effective in promoting keratinocyte adhesion, spreading, and viability. This approach could be an alternative way to improve biocompatibility.
Collapse
Affiliation(s)
- Sandra J. Perdomo
- Grupo de Inmunología Cellular y Molecular de la Universidad El Bosque-INMUBO, Colombia
| | | | - Andrés Cardona-Mendoza
- Grupo de Inmunología Cellular y Molecular de la Universidad El Bosque-INMUBO, Colombia
- School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
4
|
Diomede F, Guarnieri S, Lanuti P, Konstantinidou F, Gatta V, Rajan TS, Pierdomenico SD, Trubiani O, Marconi GD, Pizzicannella J. Extracellular vesicles (EVs): A promising therapeutic tool in the heart tissue regeneration. Biofactors 2024; 50:509-522. [PMID: 38131134 DOI: 10.1002/biof.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/04/2023] [Indexed: 12/23/2023]
Abstract
Mesenchymal stem cells (MSCs) treatment has been widely explored as a therapy for myocardial infarction, peripheral ischemic vascular diseases, dilated cardiomyopathy, and pulmonary hypertension. Latest in vitro studies suggest that MSCs can differentiate into contractile cardiomyocytes. One of the best-characterized MSCs products are MSCs-derived extracellular vesicles (EVs). EVs are crucial paracrine effectors of MSCs. Based on previous works, paracrine effects of MSCs play a primary role in the regenerative ability. Hence, in the current paper, we focused our attention on an alternative approach, exploiting products derived from human dental pulp stem cells (hDPSCs) rather than MSCs themselves, which may denote a cost-effective and safer approach. The focus has been on EVs and the bioactive molecules they contain to evaluate their ability to influence the differentiation process toward cardiomyogenic lineage. The expression of GATA4, ACTC1, CX43, and Nkx2.5 was evaluated using Immunofluorescence, real time-PCR, and Western blotting analyses. Furthermore, the expression profiling analysis of the microRNA hsa-miR-200c-3p, targeting the GATA4 gene, was studied. The hsa-miR-200c-3p was found significantly down-regulated in both c-hDPSCs + EVs-hDPSCs and c-hDPSCs + EVs-HL-1 compared to untreated c-hDPSCs underlying a possible epigenetic mechanism behind the prevalent up-regulation of its targeted GATA4 gene. The aim of the present work was to develop an in vitro model of hDPSCs able to differentiate into cardiomyocytes in order to investigate the role of EVs derived from hDPSCs and derived from HL-1 cardiomyocyte cell line in modulating the differentiation process toward cardiomyogenic lineage.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Thangavelu Soundara Rajan
- Research and Development Unit, Theertha Biopharma Private limited, KIADB, Industrial Area, Bangalore, India
| | - Sante D Pierdomenico
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University "G. d'Annunzio" Chieti-Pescara, Pescara, Italy
| |
Collapse
|
5
|
Abdulghafor MA, Mahmood MK, Tassery H, Tardivo D, Falguiere A, Lan R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J Funct Biomater 2023; 15:15. [PMID: 38248682 PMCID: PMC10816551 DOI: 10.3390/jfb15010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Biomimetic dental implants are regarded as one of the recent clinical advancements in implant surface modification. Coatings with varying thicknesses and roughness may affect the dental implant surface's chemical inertness, cell adhesion, and antibacterial characteristics. Different surface coatings and mechanical surface changes have been studied to improve osseointegration and decrease peri-implantitis. The surface medication increases surface energy, leading to enhanced cell proliferation and growth factors, and, consequently, to a rise in the osseointegration process. This review provides a comprehensive update on the numerous biomimetic coatings used to improve the surface characteristics of dental implants and their applications in two main categories: coating to improve osseointegration, including the hydroxyapatite layer and nanocomposites, growth factors (BMPs, PDGF, FGF), and extracellular matrix (collagen, elastin, fibronectin, chondroitin sulfate, hyaluronan, and other proteoglycans), and coatings for anti-bacterial performance, covering drug-coated dental implants (antibiotic, statin, and bisphosphonate), antimicrobial peptide coating (GL13K and human beta defensins), polysaccharide antibacterial coatings (natural chitosan and its coupling agents) and metal elements (silver, zinc, and copper).
Collapse
Affiliation(s)
| | - Mohammed Khalid Mahmood
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
- College of Dentistry, The American University of Iraq, Sulaimani 46001, Kurdistan, Iraq
| | | | - Delphine Tardivo
- Faculty of Dentistry, Aix-Marseille University, CNRS, EFS, ADES, 13284 Marseille, France;
| | - Arthur Falguiere
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, 13284 Marseille, France
| | - Romain Lan
- Oral Surgery Department, Timone Hospital, Aix-Marseille University, APHM, CNRS, EFS, ADES, 13284 Marseille, France;
| |
Collapse
|
6
|
Oliva S, Diomede F, Della Rocca Y, Mazzone A, Marconi GD, Pizzicannella J, Trubiani O, Murmura G. Anti-TLR4 biological response to titanium nitride-coated dental implants: anti-inflammatory response and extracellular matrix synthesis. Front Bioeng Biotechnol 2023; 11:1266799. [PMID: 38116198 PMCID: PMC10728300 DOI: 10.3389/fbioe.2023.1266799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Osteointegration is a key process during dental implant placement and is related to titanium surface topography. Implant coating and surface modification methods ameliorate the bone production and the osteogenic process. The current work aimed at evaluating the biological outcomes of two different surfaces of dental implants, machined and titanium nitride (TiN) coated, at an inflammation level using an in vitro model of human periodontal ligament stem cells. The TLR4/MyD88/NF-κB p65/NLRP3 pathway induced by the Porphyromonas gingivalis lipopolysaccharide was studied by means of gene- and protein-level expression. Moreover, the expression of vimentin, vinculin, and fibronectin was evaluated to investigate their effects on the cell adhesion and extracellular matrix deposition. The results of the present study suggest that TiN-coated titanium disks may modulate inflammation by the suppression of the TLR4/MyD88/NF-κB p65/NLRP3 pathway and accelerate extracellular matrix apposition.
Collapse
Affiliation(s)
- Stefano Oliva
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Antonella Mazzone
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Pescara, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
El Shafei SF, Raafat SN, Farag EA. Enhanced human periodontal ligament stem cell viability and osteogenic differentiation on two implant materials: An experimental in vitro study. F1000Res 2023; 12:447. [PMID: 37614561 PMCID: PMC10442589 DOI: 10.12688/f1000research.129562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Surface roughness of dental implants impacts the survival of adult periodontal stem cells and rate of differentiation. This research was conducted to test how human periodontal ligament stem cells behaved on yttria stabilized tetragonal zirconia polycrystals and polyetheretherketone (PEEK) discs with different surface topographies. Methods: Discs roughening was prepared by sandblasting. Stem cells were cultivated on zirconia discs with a polished surface, PEEK discs with a polished surface, sandblasted zirconia discs and sandblasted PEEK discs. Cells viability was assessed after 24, 48, 72 hours. Scanning electron microscopy was used to examine the adherence and attachment of cells. Osteoblastic differentiation capacity was studied by checking the mineralization clusters development through alizarin red S staining and alkaline phosphatase assay. ANOVA and the Tukey post hoc test were used for the statistical analysis. Results: Polished PEEK discs showed lower cell viability, whereas roughened sandblasted zirconia and PEEK discs showed the highest proliferation rates and cell viability percent. The osteogenic differentiation was enhanced for rough surfaces in comparison to polished surfaces. Sandblasted zirconia and PEEK discs showed a markedly increased mineralized nodule development and ALP enzyme activity compared to the polished surface and control. Conclusions: Micro- topographies creation on the PEEK implant surface enhances stem cell attachment, viability, and osteogenic differentiation.
Collapse
Affiliation(s)
- Sara F. El Shafei
- Removable Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Shereen N. Raafat
- Department of Pharmacology, Director of Stem Cell and Tissue Culture Hub, Centre of Innovative Dental Sciences (CIDS), Faculty of Dentistry,, The British University in Egypt, Cairo, Egypt
| | - Engy A. Farag
- Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
8
|
Marconi GD, Diomede F, Pizzicannella J, Trubiani O. Emerging Role of Oral Mesenchymal Stem/Stromal Cells and Their Derivates. Int J Mol Sci 2023; 24:12003. [PMID: 37569380 PMCID: PMC10418405 DOI: 10.3390/ijms241512003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have fewer ethical, moral, and safety problems in comparison with embryonic stem cells [...].
Collapse
Affiliation(s)
- Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy;
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (G.D.M.); (F.D.)
| |
Collapse
|
9
|
Fonticoli L, Diomede F, Nanci A, Fontana A, Della Rocca Y, Guadarrama Bello D, Pilato S, Trubiani O, Pizzicannella J, Marconi GD. Enriched Graphene Oxide-Polypropylene Suture Threads Buttons Modulate the Inflammatory Pathway Induced by Escherichia coli Lipopolysaccharide. Int J Mol Sci 2023; 24:ijms24076622. [PMID: 37047593 PMCID: PMC10095426 DOI: 10.3390/ijms24076622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Graphene oxide (GO), derived from graphene, has remarkable chemical–physical properties such as stability, strength, and thermal or electric conductivity and additionally shows antibacterial and anti-inflammatory properties. The present study aimed to evaluate the anti-inflammatory effects of polypropylene suture threads buttons (PPSTBs), enriched with two different concentrations of GO, in the modulation of the inflammatory pathway TLR4/MyD 88/NFκB p65/NLRP3 induced by the Escherichia coli (E. coli) lipopolysaccharide (LPS-E). The gene and the protein expression of inflammatory markers were evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by real-time PCR, western blotting, and immunofluorescence analysis. Both GO concentrations used in the polypropylene suture threads buttons-GO constructs (PPSTBs-GO) decreased the expression of inflammatory markers in hGFs treated with LPS-E. The hGFs morphology and adhesion on the PPSTBs-GO constructs were also visualized by inverted light microscopy, scanning electron microscopy (SEM), and real-time PCR. Together, these results suggest that enriched PPSTBs-GO modulates the inflammatory process through TLR4/MyD 88/NFκB p65/NLRP3 pathway.
Collapse
Affiliation(s)
- Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
| | - Antonella Fontana
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
| | - Serena Pilato
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Roy M, Corti A, Dominici S, Pompella A, Cerea M, Chelucci E, Dorocka-Bobkowska B, Daniele S. Biocompatibility of Subperiosteal Dental Implants: Effects of Differently Treated Titanium Surfaces on the Expression of ECM-Related Genes in Gingival Fibroblasts. J Funct Biomater 2023; 14:jfb14020059. [PMID: 36826858 PMCID: PMC9964008 DOI: 10.3390/jfb14020059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin β-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.
Collapse
Affiliation(s)
- Marco Roy
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
- Correspondence: (M.R.); (S.D.)
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| | - Silvia Dominici
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Medical School, 56126 Pisa, Italy
| | - Mauro Cerea
- Independent Researcher, 24121 Bergamo, Italy
| | - Elisa Chelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Barbara Dorocka-Bobkowska
- Department of Prosthodontics and Gerostomatology, Poznan University of Medical Sciences, 60-792 Poznan, Poland
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Correspondence: (M.R.); (S.D.)
| |
Collapse
|
11
|
Wu HY, Lin YH, Lee AKX, Kuo TY, Tsai CH, Shie MY. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration. Cells 2022; 11:cells11182824. [PMID: 36139399 PMCID: PMC9497129 DOI: 10.3390/cells11182824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that biological compounds and trace elements such as dopamine (DA) and copper ions (Cu) could be modified onto the surfaces of scaffolds using a one-step immersion process which is simple, inexpensive and, most importantly, non-cytotoxic. The development and emergence of 3D printing technologies such as selective laser melting (SLM) have also made it possible for us to fabricate bone scaffolds with precise structural designs using metallic compounds. In this study, we fabricated porous titanium scaffolds (Ti) using SLM and modified the surface of Ti with polydopamine (PDA) and Cu. There are currently no other reported studies with such a combination for osteogenic and angiogenic-related applications. Results showed that such modifications did not affect general appearances and microstructural characteristics of the porous Ti scaffolds. This one-step immersion modification allowed us to modify the surfaces of Ti with different concentrations of Cu ions, thus allowing us to fabricate individualized scaffolds for different clinical scenarios. The modification improved the hydrophilicity and surface roughness of the scaffolds, which in turn led to promote cell behaviors of Wharton’s jelly mesenchymal stem cells. Ti itself has high mechanical strength, therefore making it suitable for surgical handling and clinical applications. Furthermore, the scaffolds were able to release ions in a sustained manner which led to an upregulation of osteogenic-related proteins (bone alkaline phosphatase, bone sialoprotein and osteocalcin) and angiogenic-related proteins (vascular endothelial growth factor and angiopoietin-1). By combining additive manufacturing, Ti6Al4V scaffolds, surface modification and Cu ions, the novel hybrid 3D-printed porous scaffold could be fabricated with ease and specifically benefited future bone regeneration in the clinic.
Collapse
Affiliation(s)
- Hsi-Yao Wu
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
| | - Yen-Hong Lin
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
| | - Alvin Kai-Xing Lee
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ting-You Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| | - Ming-You Shie
- School of Dentistry, China Medical University, Taichung 406040, Taiwan
- X-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22967979 (ext. 3700)
| |
Collapse
|
12
|
Gentile P. Adipose-Derived Mesenchymal Stem Cells, Cell-Based Therapies, and Biomaterials as New Regenerative Strategies in Plastic Surgery. Biomedicines 2022; 10:biomedicines10081875. [PMID: 36009426 PMCID: PMC9405375 DOI: 10.3390/biomedicines10081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Science, “Tor Vergata” University, 00133 Rome, Italy; ; Tel.: +39-3388-5154-79
- Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
| |
Collapse
|
13
|
Bloise N, Waldorff EI, Montagna G, Bruni G, Fassina L, Fang S, Zhang N, Jiang J, Ryaby JT, Visai L. Early Osteogenic Marker Expression in hMSCs Cultured onto Acid Etching-Derived Micro- and Nanotopography 3D-Printed Titanium Surfaces. Int J Mol Sci 2022; 23:7070. [PMID: 35806083 PMCID: PMC9266831 DOI: 10.3390/ijms23137070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
Polyetheretherketone (PEEK) titanium composite (PTC) is a novel interbody fusion device that combines a PEEK core with titanium alloy (Ti6Al4V) endplates. The present study aimed to investigate the in vitro biological reactivity of human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) to micro- and nanotopographies produced by an acid-etching process on the surface of 3D-printed PTC endplates. Optical profilometer and scanning electron microscopy were used to assess the surface roughness and identify the nano-features of etched or unetched PTC endplates, respectively. The viability, morphology and the expression of specific osteogenic markers were examined after 7 days of culture in the seeded cells. Haralick texture analysis was carried out on the unseeded endplates to correlate surface texture features to the biological data. The acid-etching process modified the surface roughness of the 3D-printed PTC endplates, creating micro- and nano-scale structures that significantly contributed to sustaining the viability of hBM-MSCs and triggering the expression of early osteogenic markers, such as alkaline phosphatase activity and bone-ECM protein production. Finally, the topography of 3D-printed PTC endplates influenced Haralick's features, which in turn correlated with the expression of two osteogenic markers, osteopontin and osteocalcin. Overall, these data demonstrate that the acid-etching process of PTC endplates created a favourable environment for osteogenic differentiation of hBM-MSCs and may potentially have clinical benefit.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, 27100 Pavia, Italy;
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Erik I. Waldorff
- Research and Product Development, Orthofix Medical, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA; (E.I.W.); (S.F.); (N.Z.); (J.T.R.)
| | - Giulia Montagna
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, 27100 Pavia, Italy;
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Bruni
- C.S.G.I.-Department of Chemistry, Section of Physical Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy;
| | - Samuel Fang
- Research and Product Development, Orthofix Medical, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA; (E.I.W.); (S.F.); (N.Z.); (J.T.R.)
| | - Nianli Zhang
- Research and Product Development, Orthofix Medical, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA; (E.I.W.); (S.F.); (N.Z.); (J.T.R.)
| | - Jiechao Jiang
- Department of Material Science, University of Texas, Arlington, TX 76019, USA;
| | - James T. Ryaby
- Research and Product Development, Orthofix Medical, Inc., 3451 Plano Parkway, Lewisville, TX 75056, USA; (E.I.W.); (S.F.); (N.Z.); (J.T.R.)
| | - Livia Visai
- Department of Molecular Medicine (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, 27100 Pavia, Italy;
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
14
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
15
|
Pabst A, Asran A, Lüers S, Laub M, Holfeld C, Palarie V, Thiem DGE, Becker P, Hartmann A, Heimes D, Al-Nawas B, Kämmerer PW. Osseointegration of a New, Ultrahydrophilic and Nanostructured Dental Implant Surface: A Comparative In Vivo Study. Biomedicines 2022; 10:943. [PMID: 35625680 PMCID: PMC9138320 DOI: 10.3390/biomedicines10050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
This study compared the osseointegration of acid-etched, ultrahydrophilic, micro- and nanostructured implant surfaces (ANU) with non-ultra-hydrophilic, microstructured (SA) and non-ultrahydrophilic, micro- and nanostructured implant surfaces (AN) in vivo. Fifty-four implants (n = 18 per group) were bilaterally inserted into the proximal tibia of New Zealand rabbits (n = 27). After 1, 2, and 4 weeks, bone-implant contact (BIC, %) in the cortical (cBIC) and spongious bone (sBIC), bone chamber ingrowth (BChI, %), and the supra-crestal, subperiosteal amount of newly formed bone, called percentage of linear bone fill (PLF, %), were analyzed. After one week, cBIC was significantly higher for AN and ANU when compared to SA (p = 0.01 and p = 0.005). PLF was significantly increased for ANU when compared to AN and SA (p = 0.022 and p = 0.025). After 2 weeks, cBIC was significantly higher in SA when compared to AN (p = 0.039) and after 4 weeks, no significant differences in any of the measured parameters were found anymore. Ultrahydrophilic implants initially improved osseointegration when compared to their non-ultrahydrophilic counterparts. In accordance, ultrahydrophilic implants might be appropriate in cases with a necessity for an accelerated and improved osseointegration, such as in critical size alveolar defects or an affected bone turnover.
Collapse
Affiliation(s)
- Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany; (A.P.); (P.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Ashraf Asran
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Steffen Lüers
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Markus Laub
- Morphoplant GmbH, Universitätsstr. 136, 44799 Bochum, Germany; (A.A.); (S.L.); (M.L.)
| | - Christopher Holfeld
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Victor Palarie
- Laboratory of Tissue Engineering and Cellular Culture, State University of Medicine and Pharmaceutics “Nicolae Testemitanu”, Stefan cel Mare si Sfant Boulevard 165, 2004 Chisinau, Moldova;
| | - Daniel G. E. Thiem
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, Federal Armed Forces Hospital, Rübenacherstr. 170, 56072 Koblenz, Germany; (A.P.); (P.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Amely Hartmann
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| | - Peer W. Kämmerer
- Department of Oral and Maxillofacial Surgery—Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany; (C.H.); (D.G.E.T.); (A.H.); (D.H.); (B.A.-N.)
| |
Collapse
|
16
|
Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering (Basel) 2022; 9:bioengineering9040138. [PMID: 35447700 PMCID: PMC9030825 DOI: 10.3390/bioengineering9040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The infection of surgically placed implants is a problem that is both large in magnitude and that broadly affects nearly all surgical specialties. Implant-associated infections deleteriously affect patient quality-of-life and can lead to greater morbidity, mortality, and cost to the health care system. The impact of this problem has prompted extensive pre-clinical and clinical investigation into decreasing implant infection rates. More recently, antimicrobial approaches that modify or treat the implant directly have been of great interest. These approaches include antibacterial implant coatings (antifouling materials, antibiotics, metal ions, and antimicrobial peptides), antibacterial nanostructured implant surfaces, and antibiotic-releasing implants. This review provides a compendium of these approaches and the clinical applications and outcomes. In general, implant-specific modalities for reducing infections have been effective; however, most applications remain in the preclinical or early clinical stages.
Collapse
|
17
|
Lin J, Dong H, Wen Y, Zhuang X, Li S. Surface Free Energy of Titanium Disks Enhances Osteoblast Activity by Affecting the Conformation of Adsorbed Fibronectin. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.840813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study evaluated the influence of surface free energy (SFE) of titanium disks on the adsorption and conformation of fibronectin (FN) and the biological behavior of osteoblasts cultured on the FN-treated modified surfaces. High [H]-SFE titanium disks were irradiated by a 30 W UV light, while low (L)-SFE titanium disks received no treatment. The surface characteristics of the titanium disks were examined using scanning electron microscope, optical surface profilometer, X-ray photoelectron spectroscopy, and contact angle measurements. Adsorbed FN on different groups was investigated using attenuated total reflection-Fourier transform infrared spectroscopy. MG-63 cells were cultured on FN-treated titanium disks to evaluate the in vitro bioactivity. The experiment showed H-SFE titanium disks adsorbed more FN and acquired more ß-turn content than L-SFE group. MG-63 cells cultured on FN-treated H-SFE titanium disks showed better osteogenic responses, including adhesion, proliferation, alkaline phosphatase activity and mineralization than that on FN-treated L-SFE titanium disks. Compared to L-SFE titanium disks, integrin-β1, integrin-α5 and Rac-1 mRNA levels were significantly higher in MG-63 cells on FN-treated H-SFE after 3 h of culture. These findings suggest that the higher SFE of H-SFE compared to L-SFE titanium disks induced changes in the conformation of adsorbed FN that enhanced the osteogenic activity of MG-63 cells.
Collapse
|