1
|
Kondaboina S, Parrish O, Parada CA, Ferreira M. Whole Exome Sequencing of Intracranial Epidermoid Cysts Reveals Immune-Associated Mechanistic and Potential Targets. Cancers (Basel) 2024; 16:3487. [PMID: 39456581 PMCID: PMC11506683 DOI: 10.3390/cancers16203487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Intracranial Epidermoid Cysts (IECs) are rare intracranial tumors primarily treated through surgery. Cyst adherence complicates complete removal, leading to high rates of tumor progression after subtotal resection. The molecular drivers of IEC remain unknown. Consequently, advances in treatment have fallen short. Tumor genetic profiling has revealed potential targets for drug development, including FDA-approved options and reshaping treatment. The genetic landscape of IECs has not been explored. We applied Whole Exome Sequencing (WES) to IECs to gain insights into the mechanisms of oncogenesis and identify potential therapeutic targets. Methods: We performed WES on tumor tissue and matched blood samples, when available. Following GATK best practices, we conducted read processing, quality control, somatic variant calling, and copy-number inference. Data analyses and visualization were conducted in R. Results: Top altered genes are associated with the immune system and tumor microenvironment, suggesting a mechanism of immune evasion. Gene and pathway enrichment revealed a high mutation burden in genes associated with Extracellular Matrix (ECM) and PI3K-AKT-mTOR cascades. Recurrent and deleterious alterations in NOTCH2 and USP8 were identified in 50% and 30% of the cohort, respectively. Frequent amplifications in deubiquitinases and beta-defensins strengthened the involvement of immune mechanisms for oncogenic transformation. Conclusions: Top altered genes and recurrent mutations may play a role in shaping the microenvironment and modulating immune evasion in IECs. USP8 and NOTCH2 may serve as clinically relevant target for IECs. Finally, we present evidence that the crosstalk between the PI3K-Akt-mTOR and ECM signaling pathways may play a role in modulating the immune escape mechanism in IECs.
Collapse
Affiliation(s)
| | | | - Carolina Angelica Parada
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center 1, Seattle, WA 98195, USA; (S.K.); (O.P.)
| |
Collapse
|
2
|
Shen WJ, Kao HM, Wang CY, Kousar R, Lin JS, Ko CC, Lin HY, Ta HDK, Anuraga G, Xuan DTM, Kumar S, Dey S, Ly NP, Wang WJ. Multiple Comprehensive Analyses Identify Lysine Demethylase KDM as a Potential Therapeutic Target for Pancreatic Cancer. Int J Med Sci 2024; 21:2158-2169. [PMID: 39239542 PMCID: PMC11373554 DOI: 10.7150/ijms.96134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer (PC) is a challenging and heterogeneous disease with a high mortality rate. Despite advancements in treatment, the prognosis for PC patients remains poor, with a high chance of disease recurrence. Biomarkers are crucial for diagnosing cancer, predicting patient prognosis and selecting treatments. However, the current lack of effective biomarkers for PC could contribute to the insufficiency of existing treatments. These findings underscore the urgent need to develop novel strategies to fight this disease. This study utilized multiple comprehensive bioinformatic analyses to identify potential therapeutic target genes in PC, focusing on histone lysine demethylases (KDMs). We found that high expression levels of KDM family genes, particularly KDM1A, KDM5A and KDM5B, were associated with improved overall survival in the cohort. Furthermore, the infiltration of various immune cells, including B cells, neutrophils, CD8+ T cells, dendritic cells, and macrophages, was positively correlated with KDM1A, KDM5A, and KDM5B expression. Moreover, MetaCore pathway analysis revealed interesting connections between KDM1A and the cell cycle and proliferation, between KDM5A and DNA damage and double-strand break repair through homologous recombination, and between KDM5B and WNT/β-catenin signaling. These findings suggest that KDM1A, KDM5A and KDM5B may serve as promising biomarkers and therapeutic targets for PC, a disease of high importance due to its aggressive nature and urgent need for novel biomarkers to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsuan-Min Kao
- Department of Geriatric, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600566, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Rubina Kousar
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Jing-Shan Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, East Java 60234, Indonesia
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ngoc Phung Ly
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
3
|
Kalra A, Meltzer SJ. The Role of DNA Methylation in Gastrointestinal Disease: An Expanded Review of Malignant and Nonmalignant Gastrointestinal Diseases. Gastroenterology 2024:S0016-5085(24)05185-0. [PMID: 38971197 DOI: 10.1053/j.gastro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Esophageal, colorectal, pancreatic, hepatocellular, and gastric cancer together impact millions of patients worldwide each year, with high overall mortality rates, and are increasing in incidence. Additionally, premalignant gastrointestinal diseases, such as Barrett's esophagus and inflammatory bowel disease, are also increasing in incidence. However, involvement of aberrant DNA methylation in these diseases is incompletely understood, especially given recent research advancements in this field. Here, we review knowledge of this epigenetic mechanism in gastrointestinal preneoplasia and neoplasia, considering mechanisms of action, genetic and environmental factors, and 5'-C-phosphate-G-3' island methylator phenotype. We also highlight developments in translational research, focusing on genomic-wide data, methylation-based biomarkers and diagnostic tests, machine learning, and therapeutic epigenetic strategies.
Collapse
Affiliation(s)
- Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen J Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Wang Y, Peng X, Wu M, Wang B, Chen T, Zhan X. SLC35A2 expression is associated with HER2 expression in breast cancer. Discov Oncol 2024; 15:124. [PMID: 38639872 PMCID: PMC11031507 DOI: 10.1007/s12672-024-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
The role of SLC35A2 in breast cancer remains poorly understood, with limited available information on its significance. This study aimed to investigate the expression of SLC35A2 and clinicopathological variables in breast cancer patients. Immunohistochemical analysis of SLC35A2 protein was conductedon 40 adjacent non-neoplastic tissues and 320 breast cancer tissues. The study also assesed the association between SLC35A2 expression and breast cancer clinicopathological features of breast cancer, as well as its impact on overall survival. In comparison to adjacent non-neoplastic tissues, a significantly higher expression of SLC35A2 was observed in breast cancer tissues (P = 0.020), and this expression was found to be independently correlated with HER2 positivity (P = 0.001). Survival analysis indicated that patients with low SLC35A2 expression had a more favorable prognosis in HER2-positive subtype breast cancer (P = 0.017). These results suggest that SLC35A2 is overexpressed in breast cancer tissues compared to adjacent non-neoplastic tissues and may serve as a potential prognostic marker for HER2-positive subtype breast cancer. Furthermore, breast cancer patients with the HER2 positive subtype who exhibited decreased levels of SLC35A2 expression demonstrated improved long-term prognostic outcomes.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiaobo Peng
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meihong Wu
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bin Wang
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tianran Chen
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xianbao Zhan
- Department of Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Luo X, Zhang J, Guo C, Jiang N, Zhang F, Jiao Q, Xu K, Yang J, Qu G, Lv XB, Zhang Z. Solute carrier family 35 member A2 regulates mitophagy through the PI3K/AKT/mTOR axis, promoting the proliferation, migration, and invasion of osteosarcoma cells. Gene 2024; 898:148110. [PMID: 38151177 DOI: 10.1016/j.gene.2023.148110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The treatment of osteosarcoma patients exhibits individual variability, underscoring the critical importance of targeted therapy. Although (Solute carrier family 35 member A2) SLC35A2's role in the progression of various cancers has been extensively investigated, its specific implications in osteosarcoma remain unexplored. Leveraging data from the (The Cancer Genome Atlas) TCGA and (Genotype-Tissue Expression) GTEx databases, we have discerned that SLC35A2 is notably upregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Consequently, it becomes imperative to delve into the role of SLC35A2 in the context of osteosarcoma. Our research substantiates that SLC35A2 exerts a notable influence on mitochondrial autophagy in osteosarcoma, thereby exerting cascading effects on the proliferation, migration, invasion, and apoptosis of osteosarcoma cells. Mechanistically, SLC35A2 orchestrates mitochondrial autophagy via the PI3K/AKT/mTOR signaling pathway. Moreover, we have conducted rigorous animal experiments to further corroborate the repercussions of SLC35A2 on osteosarcoma growth. In summation, our study elucidates that SLC35A2's modulation of mitochondrial autophagy through the PI3K/AKT/mTOR signaling pathway constitutes a pivotal factor in the malignant progression of osteosarcoma, unveiling promising therapeutic targets for patients grappling with this condition.
Collapse
Affiliation(s)
- Xiaohui Luo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiongfeng Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chong Guo
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ning Jiang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Quahui Jiao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Gaoyang Qu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Medical Department of Graduate School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Orthopedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The first hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Lu S, Sun X, Tang H, Yu J, Wang B, Xiao R, Qu J, Sun F, Deng Z, Li C, Yang P, Yang Z, Rao B. Colorectal cancer with low SLC35A3 is associated with immune infiltrates and poor prognosis. Sci Rep 2024; 14:329. [PMID: 38172565 PMCID: PMC10764849 DOI: 10.1038/s41598-023-51028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Lu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Xibo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, 271000, China
| | - Huazhen Tang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Jinxuan Yu
- Zibo Central Hospital Affiliated to Binzhou Medical College, Zibo, 255020, China
| | - Bing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Ruixue Xiao
- Inner Mongolia Medical University, Hohhot, 010100, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Fang Sun
- The Fifth Medical Center of the General Hospital of the People's Liberation Army of China, Beijing, 100000, China
| | - Zhuoya Deng
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Cong Li
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Penghui Yang
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China.
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
7
|
Wang Y, Chen L, Chen J, Bai Z, Cao L. Comprehensive analysis of transcriptome data and experimental identification show that solute carrier 35 member A2 (SLC35A2) is a prognostic marker of colorectal cancer. Aging (Albany NY) 2023; 15:11554-11570. [PMID: 37889544 PMCID: PMC10637800 DOI: 10.18632/aging.205145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a solid tumor with high morbidity and mortality rates. Accumulating evidence shows that the soluble carrier family 35 member A2 (SLC35A2), a nucleotide sugar transporter, plays a key role in the pathogenesis of various tumors. However, its expression and function in CRC has not been fully elucidated. METHODS The prognosis-related gene SLC35A2 was obtained using differential analysis, prognosis correlation analysis, and LASSO regression screening. Its expression levels in CRC tissues were analyzed, and so was the relationship of this expression with clinical characteristics of patients. Subsequently, the expression levels were correlated with clinicopathological parameters using immunohistochemical analysis. Analysis based on GO/KEGG databases was used to reveal the potential mechanisms of SLC35A2. Next, we explored the relationship between SLC35A2 and immune cells in CRC tissues. A nomogram was created to help understand the prognosis of CRC patients. Finally, western blotting and qRT-PCR reaction were used to verify the expression of SLC35A2 in CRC cell lines. RESULTS SLC35A2 expression was upregulated and related to tumor pathological stage and lymph node metastasis, indicating that SLC35A2 is an independent prognostic factor and a potential diagnostic marker for CRC. We verified by IHC, WB and PCR that the expression of SLC35A2 was up-regulated in colorectal cancer tissues and cell lines, and its high expression was related to the tumor pathological stage of CRC clinical samples. CONCLUSIONS Our study found that SLC35A2 can be used as a biomarker for the diagnosis and prognosis of CRC, providing motivation for further study.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Liang Chen
- First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jing Chen
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| | - Zhenzhen Bai
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| | - Liyu Cao
- Department of Pathology, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, People’s Republic of China
| |
Collapse
|
8
|
Cheng KP, Shen WX, Jiang YY, Chen Y, Chen YZ, Tan Y. Deep learning of 2D-Restructured gene expression representations for improved low-sample therapeutic response prediction. Comput Biol Med 2023; 164:107245. [PMID: 37480677 DOI: 10.1016/j.compbiomed.2023.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
Clinical outcome prediction is important for stratified therapeutics. Machine learning (ML) and deep learning (DL) methods facilitate therapeutic response prediction from transcriptomic profiles of cells and clinical samples. Clinical transcriptomic DL is challenged by the low-sample sizes (34-286 subjects), high-dimensionality (up to 21,653 genes) and unordered nature of clinical transcriptomic data. The established methods rely on ML algorithms at accuracy levels of 0.6-0.8 AUC/ACC values. Low-sample DL algorithms are needed for enhanced prediction capability. Here, an unsupervised manifold-guided algorithm was employed for restructuring transcriptomic data into ordered image-like 2D-representations, followed by efficient DL of these 2D-representations with deep ConvNets. Our DL models significantly outperformed the state-of-the-art (SOTA) ML models on 82% of 17 low-sample benchmark datasets (53% with >0.05 AUC/ACC improvement). They are more robust than the SOTA models in cross-cohort prediction tasks, and in identifying robust biomarkers and response-dependent variational patterns consistent with experimental indications.
Collapse
Affiliation(s)
- Kai Ping Cheng
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, PR China
| | - Wan Xiang Shen
- Bioinformatics and Drug Design Group, Department of Pharmacy, Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Yu Yang Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yan Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yu Zong Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, PR China.
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; The Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518110, PR China.
| |
Collapse
|
9
|
Sun X, Yuan Z, Zhang L, Ren M, Yang J, Xu Y, Hao J. Comprehensive Analysis of SLC35A2 in Pan-Cancer and Validation of Its Role in Breast Cancer. J Inflamm Res 2023; 16:3381-3398. [PMID: 37593196 PMCID: PMC10427759 DOI: 10.2147/jir.s419994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Purpose Elucidation of the oncogenic role of SLC35A2 in human tumors and the potential function and clinical significance in breast cancer. Methods Pan-cancer analysis was performed via various bioinformatics tools to explain the pathogenic role of SLC35A2. A prognostic nomogram was also developed based on the SLC35A2 expression and clinicopathological characteristics in breast cancer patients. In addition, the role of SLC35A2 was validated in breast cancer by in vivo and in vitro experiments. Results SLC35A2 expression is increased in 27 tumor types, and its high expression is substantially correlated with poor prognosis in patients with a variety of cancers. Receiver operating characteristic (ROC) curves showed that SLC35A2 expression levels could accurately distinguish most tumor tissues from normal tissues. High SLC35A2 expression was linked to increased immune infiltration in myeloid-derived suppressor cells (MDSC), as well as immune checkpoints, ferroptosis-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI). SLC35A2 may be involved in tumorigenesis by regulating the glycosylation process. Furthermore, multivariate Cox analysis showed that SLC35A2 was an independent prognostic factor for breast cancer. And the nomogram model had good predictive accuracy for the prognosis of breast cancer patients. Meanwhile, cellular experiments demonstrated that knockdown of SLC35A2 could significantly inhibit the proliferation, migration and invasion of breast cancer cells, while increasing the protein level of E-cadherin and decreasing N-cadherin. A nude mouse xenograft model showed that inhibition of SLA35A2 expression could significantly inhibit tumor growth. Conclusion SLC35A2 has good diagnostic and prognostic values in multiple cancers and is closely related to tumor immune infiltration. In addition, SLA35A2 as an oncogene in breast cancer may be involved in the progression of epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Xiaonan Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Zhichao Yuan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Lu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Min Ren
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jing Yang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
10
|
Tram VTN, Khoa Ta HD, Anuraga G, Dung PVT, Xuan DTM, Dey S, Wang CY, Liu YN. Dysbindin Domain-Containing 1 in Prostate Cancer: New Insights into Bioinformatic Validation of Molecular and Immunological Features. Int J Mol Sci 2023; 24:11930. [PMID: 37569304 PMCID: PMC10418609 DOI: 10.3390/ijms241511930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men, yet its pathogenic pathways remain poorly understood. Transcriptomics and high-throughput sequencing can help uncover cancer diagnostic targets and understand biological circuits. Using prostate adenocarcinoma (PRAD) datasets of various web-based applications (GEPIA, UALCAN, cBioPortal, SR Plot, hTFtarget, Genome Browser, and MetaCore), we found that upregulated dysbindin domain-containing 1 (DBNDD1) expression in primary prostate tumors was strongly correlated with pathways involving the cell cycle, mitotic in KEGG, WIKI, and REACTOME database, and transcription factor-binding sites with the DBNDD1 gene in prostate samples. DBNDD1 gene expression was influenced by sample type, cancer stage, and promoter methylation levels of different cancers, such as PRAD, liver hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). Regulation of glycogen synthase kinase (GSK)-3β in bipolar disorder and ATP/ITP/GTP/XTP/TTP/CTP/UTP metabolic pathways was closely correlated with the DBNDD1 gene and its co-expressed genes in PCa. DBNDD1 gene expression was positively associated with immune infiltration of B cells, Myeloid-derived suppressor cell (MDSC), M2 macrophages, andneutrophil, whereas negatively correlated with CD8+ T cells, T follicular helper cells, M1 macrophages, and NK cells in PCa. These findings suggest that DBNDD1 may serve as a viable prognostic marker not only for early-stage PCa but also for immunotherapies.
Collapse
Affiliation(s)
- Van Thi Ngoc Tram
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Laboratory, University Medical Center Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (H.D.K.T.); (G.A.); (P.V.T.D.); (D.T.M.X.); (S.D.)
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Xu S, Chen X, Fang J, Chu H, Fang S, Zeng L, Ma H, Zhang T, Chen Y, Wang T, Zhang X, Shen T, Zheng Y, Xu D, Lu Z, Pan Y, Liu Y. Comprehensive analysis of 33 human cancers reveals clinical implications and immunotherapeutic value of the solute carrier family 35 member A2. Front Immunol 2023; 14:1155182. [PMID: 37275857 PMCID: PMC10232969 DOI: 10.3389/fimmu.2023.1155182] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Background Solute carrier family 35 member A2 (SLC35A2), which belongs to the SLC35 solute carrier family of human nucleoside sugar transporters, has shown regulatory roles in various tumors and neoplasms. However, the function of SLC35A2 across human cancers remains to be systematically assessed. Insights into the prediction ability of SLC35A2 in clinical practice and immunotherapy response remains limited. Materials and methods We obtained the gene expression and protein levels of SLC35A2 in a variety of tumors from Molecular Taxonomy of Breast Cancer International Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, Chinese Glioma Genome Atlas, and Human Protein Atlas databases. The SLC35A2 level was validated by immunohistochemistry. The predictive value for prognosis was evaluated by Kaplan-Meier survival and Cox regression analyses. Correlations between SLC35A2 expression and DNA methylation, genetic alterations, tumor mutation burden (TMB), microsatellite instability (MSI), and tumor microenvironment were performed using Spearman's correlation analysis. The possible downstream pathways of SLC35A2 in different human cancers were explored using gene set variation analysis. The potential role of SLC35A2 in the tumor immune microenvironment was evaluated via EPIC, CIBERSORT, MCP-counter, CIBERSORT-ABS, quanTIseq, TIMER, and xCell algorithms. The difference in the immunotherapeutic response of SLC35A2 under different expression conditions was evaluated by the tumor immune dysfunction and exclusion (TIDE) score as well as four independent immunotherapy cohorts, which includes patients with bladder urothelial carcinoma (BLCA, N = 299), non-small cell lung cancer (NSCLC, N = 72 and N = 36) and skin cutaneous melanoma (SKCM, N = 25). Potential drugs were identified using the CellMiner database and molecular docking. Results SLC35A2 exhibited abnormally high or low expression in 23 cancers and was significantly associated with the prognosis. In various cancers, SLC35A2 expression and mammalian target of rapamycin complex 1 signaling were positively correlated. Multiple algorithmic immune infiltration analyses suggested an inverse relation between SLC35A2 expression and infiltrating immune cells, which includes CD4+T cells, CD8+T cells, B cells, and natural killer cells (NK) in various tumors. Furthermore, SLC35A2 expression was significantly correlated with pan-cancer immune checkpoints, TMB, MSI, and TIDE genes. SLC35A2 showed significant predictive value for the immunotherapy response of patients with diverse cancers. Two drugs, vismodegib and abiraterone, were identified, and the free binding energy of cytochrome P17 with abiraterone was higher than that of SLC35A2 with abiraterone. Conclusion Our study revealed that SLC35A2 is upregulated in 20 types of cancer, including lung adenocarcinoma (LUAD), breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), and lung squamous cell carcinoma (LUSC). The upregulated SLC35A2 in five cancer types indicates a poor prognosis. Furthermore, there was a positive correlation between the overexpression of SLC35A2 and reduced lymphocyte infiltration in 13 cancer types, including BRCA and COAD. Based on data from several clinical trials, patients with LUAD, LUSC, SKCM, and BLCA who exhibited high SLC35A2 expression may experience improved immunotherapy response. Therefore, SLC35A2 could be considered a potential predictive biomarker for the prognosis and immunotherapy efficacy of various tumors. Our study provides a theoretical basis for further investigating its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiguang Chen
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hansu Ma
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yu Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tao Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Tao Shen
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Youbin Zheng
- Department of Radiology, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Dongming Xu
- Department of Neurosurgery, The County Hospital of Qianguo, Songyuan, Jilin, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
LIU CHIENLIANG, CHENG SHIHPING, HUANG WENCHIEN, CHEN MINGJEN, LIN CHIHSIN, CHEN SHANNA, CHANG YUANCHING. Aberrant Expression of Solute Carrier Family 35 Member A2 Correlates With Tumor Progression in Breast Cancer. In Vivo 2023; 37:262-269. [PMID: 36593004 PMCID: PMC9843756 DOI: 10.21873/invivo.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM A recent study suggested that solute carrier family 35 member A2 (SLC35A2) is related to poor prognosis in patients with breast cancer. SLC35A2 transports uridine diphosphate-galactose from the cytosol to the lumen of the endoplasmic reticulum and Golgi. MATERIALS AND METHODS Immunohistochemical expression of SLC35A2 was evaluated using tissue microarrays. Cell growth, migration, and invasion of breast cancer cells were examined following loss- and gain-of-expression of SLC35A2. RESULTS Normal breast tissue exhibited SLC35A2 immunoreactivity in the nucleus. A progressive increase in cytoplasmic expression from in situ carcinoma to invasive carcinoma was observed. There was a correlation between cytoplasmic SLC35A2 expression and breast cancer stage (p<0.001). MDA-MB-468 and MCF-7 cells transfected with SLC35A2 shRNA had unchanged cell viability but significantly reduced cell migration and invasion. In contrast, MDA-MB-231 and HCC1806 cells transfected with the SLC35A2 expression vector showed increased migration. CONCLUSION Breast cancer progression is accompanied by differential expression patterns of SLC35A2. The migratory or invasive capacity of breast cancer cells is associated with SLC35A2 expression.
Collapse
Affiliation(s)
- CHIEN-LIANG LIU
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
| | - SHIH-PING CHENG
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, R.O.C
| | - WEN-CHIEN HUANG
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
| | - MING-JEN CHEN
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, R.O.C
| | - CHI-HSIN LIN
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, R.O.C.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan, R.O.C
| | - SHAN-NA CHEN
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, R.O.C
| | - YUAN-CHING CHANG
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
| |
Collapse
|
13
|
Cheng H, Wang S, Gao D, Yu K, Chen H, Huang Y, Li M, Zhang J, Guo K. Nucleotide sugar transporter SLC35A2 is involved in promoting hepatocellular carcinoma metastasis by regulating cellular glycosylation. Cell Oncol (Dordr) 2022; 46:283-297. [PMID: 36454514 DOI: 10.1007/s13402-022-00749-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Recently, aberrant glycosylation has been recognized to be relate to malignant behaviors of cancer and outcomes of patients with various cancers. SLC35A2 plays an indispensable role on glycosylation as a nucleotide sugar transporter. However, effects of SLC35A2 on malignant behaviors of cancer cells and alteration of cancer cells surface glycosylation profiles are still not fully understood, particularly in hepatocellular carcinoma (HCC). Hence, from a glycosylation perspective, we investigated the effects of SLC35A2 on metastatic behaviors of HCC cells. METHODS SLC35A2 expression in clinical samples and HCC cells was examined by immunohistochemical staining or Western blot/quantitative PCR and was regulated by RNA interference or vectors-mediated transfection. Effects of SLC35A2 expression alteration on metastatic behaviors and membrane glycan profile of HCC cells were observed by using respectively invasion, migration, cell adhesion assay, in vivo lung metastatic nude mouse model and lectins microarray. Co-location among proteins in HCC cells was observed by fluorescence microscope and detected by an in vitro co-immunoprecipitation assay. RESULTS SLC35A2 was upregulated in HCC tissues, and is associated with poor prognosis of HCC patients. SLC35A2 expression alteration significantly affected the invasion, adhesion, metastasis and membrane glycan profile and led to the dysregulated expressions or glycosylation of cell adhesion-related molecules in HCC cells. Mechanistically, the maintenance of SLC35A2 activity is critical for the recruitment of the key galactosyltransferase B4GalT1, which is responsible for complex glycoconjugate and lactose biosynthesis, to Golgi apparatus in HCC cells. CONCLUSION SLC35A2 plays important roles in promoting HCC metastasis by regulating cellular glycosylation modification and inducing the cell adhesive ability of HCC cells.
Collapse
|
14
|
Wang CC, Shen WJ, Anuraga G, Khoa Ta HD, Xuan DTM, Chen ST, Shen CF, Jiang JZ, Sun Z, Wang CY, Wang WJ. Novel Potential Therapeutic Targets of PTPN Families for Lung Cancer. J Pers Med 2022; 12:jpm12121947. [PMID: 36556168 PMCID: PMC9784538 DOI: 10.3390/jpm12121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the treatment of lung adenocarcinoma (LUAD) having partially improved in recent years, LUAD patients still have poor prognosis rates. Therefore, it is especially important to explore effective biomarkers and exploit novel therapeutic developments. High-throughput technologies are widely used as systematic approaches to explore differences in expressions of thousands of genes for both biological and genomic systems. Recently, using big data analyses in biomedicine research by integrating several high-throughput databases and tools, including The Cancer Genome Atlas (TCGA), cBioportal, Oncomine, and Kaplan-Meier plotter, is an important strategy to identify novel biomarkers for cancer therapy. Here, we used two different comprehensive bioinformatics analysis and revealed protein tyrosine phosphatase non-receptor type (PTPN) family genes, especially PTPN1 and PTPN22, were downregulated in lung cancer tissue in comparison with normal samples. The survival curves indicated that LUAD patients with high transcription levels of PTPN5 were significantly associated with a good prognosis. Meanwhile, Gene Ontology (GO) and MetaCore analyses indicated that co-expression of the PTPN1, PTPN5, and PTPN21 genes was significantly enriched in cancer development-related pathways, including GTPase activity, regulation of small GTPase-mediated signal transduction, response to mechanical stimuli, vasculogenesis, organ morphogenesis, regulation of stress fiber assembly, mitogen-activated protein kinase (MAPK) cascade, cell migration, and angiogenesis. Collectively, this study revealed that PTPN family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, which provide new targets for treating LUAD patients.
Collapse
Affiliation(s)
- Chin-Chou Wang
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Wan-Jou Shen
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sih-Tong Chen
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Chiu-Fan Shen
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, China
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.W.); (W.-J.W.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40676, Taiwan
- Correspondence: (C.-Y.W.); (W.-J.W.)
| |
Collapse
|
15
|
Construction and Validation of a Prognostic Model Based on mRNAsi-Related Genes in Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6532591. [PMID: 36267313 PMCID: PMC9578885 DOI: 10.1155/2022/6532591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background Breast cancer is a big threat to the women across the world with substantial morbidity and mortality. The pressing matter of our study is to establish a prognostic gene model for breast cancer based on mRNAsi for predicting patient's prognostic survival. Methods From The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we downloaded the expression profiles of genes in breast cancer. On the basis of one-class logistic regression (OCLR) machine learning algorithm, mRNAsi of samples was calculated. Kaplan-Meier (K-M) and Kruskal-Wallis (K-W) tests were utilized for the assessment of the connection between mRNAsi and clinicopathological variables of the samples. As for the analysis on the correlation between mRNAsi and immune infiltration, ESTIMATE combined with Spearman test was employed. The weighted gene coexpression network analysis (WGCNA) network was established by utilizing the differentially expressed genes in breast cancer, and the target module with the most significant correlation with mRNAsi was screened. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to figure out the biological functions of the target module. As for the construction of the prognostic model, univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were performed on genes in the module. The single sample gene set enrichment analysis (ssGSEA) and tumor mutational burden were employed for the analysis on immune infiltration and gene mutations in the high- and low-risk groups. As for the analysis on whether this model had the prognostic value, the nomogram and calibration curves of risk scores and clinical characteristics were drawn. Results Nine mRNAsi-related genes (CFB, MAL2, PSME2, MRPL13, HMGB3, DCTPP1, SHCBP1, SLC35A2, and EVA1B) comprised the prognostic model. According to the results of ssGSEA and gene mutation analysis, differences were shown in immune cell infiltration and gene mutation frequency between the high- and low-risk groups. Conclusion Nine mRNAsi-related genes screened in our research can be considered as the biomarkers to predict breast cancer patients' prognoses, and this model has a potential relationship with individual somatic gene mutations and immune regulation. This study can offer new insight into the development of diagnostic and clinical treatment strategies for breast cancer.
Collapse
|