1
|
Jeong S, Lee H, Jeong Y, Cha HJ. Indocyanine Green-Loaded Adhesive Proteinic Nanoparticles for Effective Locoregional and Prolonged Photothermal Anticancer Therapy. Biomacromolecules 2024; 25:6913-6921. [PMID: 39297577 DOI: 10.1021/acs.biomac.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Conventional anticancer therapies, including surgical resection, radiation, and chemotherapy, are the primary modalities for treating various forms of cancer. However, these treatments often bring significant side effects and risk of recurrence, underscoring the need for more targeted and less invasive therapeutic options. To address this challenge, we developed an adhesive nanoparticle (NP)-based effective anticancer photothermal therapy (PTT) system using bioengineered mussel adhesion protein (MAP). The unique underwater tissue adhesive properties of MAP NPs enabled targeted delivery and prolonged retention at the tumor site, thereby improving therapeutic efficacy. Our innovative indocyanine green (ICG)-loaded MAP NPs (MAP@ICG NPs) demonstrated strong photothermal capability and stability, and potent anticancer activity in vitro. In vivo intratumor injection of the MAP@ICG NPs showed remarkable anticancer PTT effects, effectively reducing tumor growth with minimal damage to surrounding tissues. The development and utilization of this adhesive proteinic NP-based PTT system represent a significant advancement in cancer therapy, offering a promising alternative that combines the precision of NP delivery with effective therapeutic efficacy.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeokjun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeonsu Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Marin D, Kralj S, Stehlik S, Marchesan S. Nanocomposite Hydrogels from Nanodiamonds and a Self-Assembling Tripeptide. Chemistry 2024:e202402961. [PMID: 39325557 DOI: 10.1002/chem.202402961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
We report the successful assembly of a tripeptide in the presence of nanodiamonds (NDs) into nanocomposite hydrogels. While the presence of NDs does not hinder peptide self-assembly and gelation kinetics are not affected, NDs improve the viscoelastic properties and significantly increase the elastic moduli of the peptide hydrogels. Increased resistance of the gels against applied stress can also be attained depending on the amount of NDs loaded in the nanocomposite. Raman micro-spectroscopy and TEM confirmed the presence of NDs on the surface, and not in the interior, of peptide nanofibers. Peptide-ND non-covalent interactions are also probed by Raman and Fourier-transformed infrared spectroscopies. Overall, this work enables the embedding of NDs into nanocomposite hydrogels formed through the self-assembly of a simple tripeptide at physiological pH, and it provides key insights to open the way for their future applications in biomaterials, for instance exploiting their luminescence and near-infrared responsiveness.
Collapse
Affiliation(s)
- Davide Marin
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Department of Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department -, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stepan Stehlik
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200, Praha, Czechia
- New Technologies Research Centre, University of West Bohemia, Univerzitni 8, 30100, Plzeň, Czechia
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
3
|
Akakuru OU, Xing J, Huang S, Iqbal ZM, Bryant S, Wu A, Trifkovic M. Leveraging Non-Radiative Transitions in Asphaltenes-Derived Carbon Dots for Cancer Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404591. [PMID: 39210655 DOI: 10.1002/smll.202404591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Cancer photothermal therapy leverages the capability of photothermal agents to convert light to heat for cancer cell ablation and necrosis. However, most conventional photothermal agents (Au, CuS, Pd, mesoporous silica nanoparticles, and indocyanine green dye) either face scalability challenges or photobleached upon prolonged irradiation which jeopardizes practical applications. Here, asphaltenes-derived carbon dots (ACDs, 5 nm) are rationally engineered as a low-cost and photostable photothermal agent with negligible in vivo cytotoxicity. The abundant water-solvating functional groups on the ACDs surface endows them with excellent water re-dispersibility that outperforms those of most commercial nanomaterials. Photothermal therapeutic property of the ACDs is mechanistically described by non-radiative transitions of excited electrons at 808 nm via internal conversions and vibrational relaxations. Consequently, the ACDs offer cancer photothermal therapy in mice within 15 days post-exposure to one-time near infrared irradiation. This pioneering study showcases the first utilization of asphaltenes-based materials for cancer therapy and is expected to arouse further utilization of such materials in various cancer theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zubair M Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Steven Bryant
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
4
|
Takahashi M, Fujishiro J, Nomura S, Harada M, Hinoki A, Arake M, Ozeki E, Hara I, Satoh A, Tainaka T, Uchida HO, Morimoto Y. DDS-type near-infrared light absorber enables deeper lesion treatment in laser photothermal therapy while avoiding damage to surrounding organs. Front Bioeng Biotechnol 2024; 12:1444107. [PMID: 39211012 PMCID: PMC11357940 DOI: 10.3389/fbioe.2024.1444107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The efficacy of drug delivery system (DDS)-type near-infrared (NIR) absorbing agents in enhancing laser photothermal therapy is widely acknowledged. Despite the acknowledged efficacy, the therapeutic advantages of photothermal therapy using DDS-type NIR-absorbing agents over simple photothermal therapy without such agents have not been fully elucidated. This study was designed to investigate two primary objectives: firstly, the ability of DDS-type NIR-absorbing agents to induce cell death at greater depths within tumors, and secondly, their capacity to minimize collateral damage to adjacent healthy organs. To investigate these objectives, we employed a combination of indocyanine green lactosome-a DDS-type NIR-absorbing agent-and a precision-controlled laser hyperthermia system. An orthotopic neuroblastoma tumor model was used to closely simulate clinical conditions. The findings revealed that photothermal therapy using the DDS-type NIR-absorbing agent not only facilitates deeper penetration of cell death within tumors but also significantly mitigates thermal damage to surrounding healthy tissues, when compared to simple phototherapy without the agent. Furthermore, the combined treatment significantly prolonged the survival periods of the animals involved. This study is the first to analyze these therapeutic efficacies using quantitative data from an orthotopic tumor animal model and substantiated the potential of DDS-type NIR-absorbing agents to deepen the therapeutic impact of photothermal therapy while safeguarding vital organs, thereby enhancing overall treatment outcomes.
Collapse
Affiliation(s)
- Masataka Takahashi
- Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
- Department of Cell Engineering, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Nomura
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Harada
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Akinari Hinoki
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Arake
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
| | - Eiichi Ozeki
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Isao Hara
- Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Ayano Satoh
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan
| | - Takahisa Tainaka
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiro-o Uchida
- Department of Pediatric Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
5
|
Hsiao WWW, Lam XM, Le TN, Cheng CA, Chang HC. Exploring nanodiamonds: leveraging their dual capacities for anticancer photothermal therapy and temperature sensing. NANOSCALE 2024; 16:14994-15008. [PMID: 39044543 DOI: 10.1039/d4nr01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cancer has become a primary global health concern, which has prompted increased attention towards targeted therapeutic approaches like photothermal therapy (PTT). The unique optical and magnetic properties of nanodiamonds (NDs) have made them versatile nanomaterials with promising applications in biomedicine. This comprehensive review focuses on the potential of NDs as a multifaceted platform for anticancer therapy, mainly focusing on their dual functionality in PTT and temperature sensing. The review highlighted NDs' ability to enhance PTT through hybridization or modification, underscoring their adaptability in delivering small molecule reagents effectively. Furthermore, NDs, particularly fluorescent nanodiamonds (FNDs) with negatively charged nitrogen-vacancy centers, enable precise temperature monitoring, enhancing PTT efficacy in anticancer treatment. Integrating FNDs into PTT holds promise for advancing therapeutic efficacy by providing valuable insights into localized temperature variations and cell death mechanisms. This review highlights new insights into cancer treatment strategies, showcasing the potential of NDs to revolutionize targeted therapeutics and improve patient outcomes.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xuan Mai Lam
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
6
|
Nakahara Y, Nakabayashi H, Miyazaki J, Watanabe M, Tamai T, Yajima S. Polydopamine-Coated Solid Silica Nanoparticles Encapsulating IR-783 Dyes: Synthesis and NIR Fluorescent Cell Imaging. ACS OMEGA 2024; 9:19932-19939. [PMID: 38737067 PMCID: PMC11080031 DOI: 10.1021/acsomega.3c09655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024]
Abstract
We report a simple and efficient synthetic method for polydopamine (PDA)-coated solid silica nanoparticles (s-SiO2@PDA NPs) encapsulating anionic near-infrared (NIR) fluorescent dyes through physical adsorption. Despite the use of anionic NIR fluorescent dyes indocyanine green (ICG) and 2-[2-[2-chloro-3-[2-[1,3-dihydro-3,3-dimethyl-1-(4-sulfobutyl)-2H-indol-2-ylidene]-ethylidene]-1-cyclohexen-1-yl]-ethenyl]-3,3-dimethyl-1-(4-sulfobutyl)-3H-indolium (IR-783), they were successfully immobilized on anionic s-SiO2@PDA NP surfaces under acidic aqueous conditions. After embedding in the s-SiO2@PDA NPs, the fluorescence of ICG was almost quenched, while a diminished IR-783 fluorescence remained observable. The fluorescence intensity of IR-783 embedded in s-SiO2@PDA NPs remained almost constant over 2 weeks in a pseudobiological solution, with a slight reduction due to dye degradation and dye leakage from the s-SiO2@PDA NPs. Finally, the s-SiO2@PDA NPs encapsulating IR-783 were successfully used for NIR fluorescent imaging of African green monkey kidney cells.
Collapse
Affiliation(s)
- Yoshio Nakahara
- Faculty
of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Haruki Nakabayashi
- Faculty
of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Jun Miyazaki
- Faculty
of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| | - Mitsuru Watanabe
- Morinomiya
Center, Osaka Research Institute of Industrial
Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Toshiyuki Tamai
- Morinomiya
Center, Osaka Research Institute of Industrial
Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Setsuko Yajima
- Faculty
of Systems Engineering, Wakayama University, 930 Sakae-dani, Wakayama 640-8510, Japan
| |
Collapse
|
7
|
Alexander E, Leong KW. Nanodiamonds in biomedical research: Therapeutic applications and beyond. PNAS NEXUS 2024; 3:pgae198. [PMID: 38983694 PMCID: PMC11231952 DOI: 10.1093/pnasnexus/pgae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Nanodiamonds (NDs) comprise a family of carbon-based nanomaterials (i.e. diameter <100 nm) with the same sp3 lattice structure that gives natural diamonds their exceptional hardness and electrical insulating properties. Among all carbon nanomaterials-e.g. carbon nanotubes, nanodots, and fullerenes-NDs are of particular interest for biomedical applications because they offer high biocompatibility, stability in vivo, and a dynamic surface chemistry that can be manipulated to perform a seemingly limitless variety of ultra-specific tasks. NDs are already deepening our understanding of basic biological processes, while numerous laboratories continue studying these nanomaterials with an aim of making seismic improvements in the prevention, diagnosis, and treatment of human diseases. This review surveys approximately 2,000 the most recent articles published in the last 5 years and includes references to more than 150 of the most relevant publications on the biomedical applications of NDs. The findings are categorized by contemporary lines of investigation based on potential applications, namely: genetics and gene editing, drug delivery systems, neural interfacing, biomedical sensors, synthetic biology, and organ and tissue regeneration. This review also includes a brief background of NDs and the methods currently developed for their synthesis and preparation. Finally, recommendations for future investigations are offered.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
WADHWA KARAN, CHAUHAN PAYAL, KUMAR SHOBHIT, PAHWA RAKESH, VERMA RAVINDER, GOYAL RAJAT, SINGH GOVIND, SHARMA ARCHANA, RAO NEHA, KAUSHIK DEEPAK. Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier. Oncol Res 2024; 32:877-897. [PMID: 38686045 PMCID: PMC11056000 DOI: 10.32604/or.2024.047278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases, for example, PubMed, Science Direct, Google Scholar, and others, using specific keyword combinations, including "glioblastoma," "brain tumor," "nanocarriers," and several others. Conclusion This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management. Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed.
Collapse
Affiliation(s)
- KARAN WADHWA
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - PAYAL CHAUHAN
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - SHOBHIT KUMAR
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET) NH-58, Delhi-Roorkee Highway, Meerut, 250005, India
| | - RAKESH PAHWA
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - RAVINDER VERMA
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - RAJAT GOYAL
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - GOVIND SINGH
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - ARCHANA SHARMA
- Delhi Pharmaceutical Sciences and Research University (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - NEHA RAO
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - DEEPAK KAUSHIK
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
9
|
Dey T, Ghosh A, Sanyal A, Charles CJ, Pokharel S, Nair L, Singh M, Kaity S, Ravichandiran V, Kaur K, Roy S. Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer. Biomed Mater 2024; 19:032003. [PMID: 38574581 DOI: 10.1088/1748-605x/ad3abb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for theirin vivoandin vitrointerventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.
Collapse
Affiliation(s)
- Tanima Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Anushikha Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Arka Sanyal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | | | - Sahas Pokharel
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar 751024, Odisha, India
| | - Lakshmi Nair
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar 788011, Assam, India
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| | - Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
- Department of Pharmacy & Biomolecular Science, Royal College of Surgeons, Dublin 2 D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical, Education and Research, Kolkata, West Bengal 700054, India
| |
Collapse
|
10
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
11
|
Wu C, Chen W, Yan S, Zhong J, Du L, Yang C, Pu Y, Li Y, Lin J, Zeng M, Zhang X. MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases. Regen Biomater 2024; 11:rbae019. [PMID: 38525327 PMCID: PMC10960927 DOI: 10.1093/rb/rbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Non-invasive image-guided precise photothermal/photodynamic therapy (PTT/PDT) has been proven to be an effective local treatment modality but incompetent against metastases. Hence, the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication. Herein, a magnetic resonance imaging (MRI)-visualized PTT/PDT agent (SIDP NMs) was constructed, and the efficacy of its multimodal combination with a programmed cell death 1 (PD-1) inhibitor in the treatment of melanoma and metastases was studied. Due to the hydrophobic encapsulation of indocyanine green within the micellar core, SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under an 808 nm near-infrared laser. In vitro cell experiments showed that SIDP NMs had a good killing effect. After incubating with B16-F10 cells for 24 h and irradiating with an 808-nm laser for 10 min, cell viability decreased significantly. Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP non-invasively due to the presence of superparamagnetic iron oxide nanocrystal in SIDP NMs. When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI, the temperature of the tumor area rapidly increased from 32°C to 60.7°C in 5 min. In mouse melanoma ablation and distant tumor immunotherapy studies, SIDP NMs provided excellent MRI-guided PTT/PDT results and, when combined with PD-1 inhibitor, have great potential to cure primary tumors and eradicate metastases.
Collapse
Affiliation(s)
- Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Wei Chen
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Shuang Yan
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jie Zhong
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Liang Du
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Chenwu Yang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Mei Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
12
|
Millard M, Bernhard Y, Canilho N, Grandemange S, Parant S, Mourer M, Lassalle HP, Pasc A. Enhanced stability and photothermal efficiency of Indocyanine Green J-aggregates by nanoformulation with Calix[4]arene for photothermal therapy of cancers. Colloids Surf B Biointerfaces 2023; 230:113516. [PMID: 37660516 DOI: 10.1016/j.colsurfb.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
Photothermal therapy (PTT) is a method of growing attention, owing to its controllable process, high efficiency and minimal side effect. Indocyanine Green (ICG) is as Food and Drug Administration (FDA) approved agent that stands on the frontline of further developments of PTT toward clinics. However, the applicability of ICG-mediated PTT is limited by the rapid in vivo clearance and photo-degradation of ICG. To improve those parameters, nanosized ICG-loaded nanoparticles (ICG-J/CX) were fabricated in this study by co-assembly of anionic ICG J-aggregates (ICG-J) with cationic tetraguanidinium calix[4]arene (CX). This very simple approach produces ICG-J/CX with a well-defined nanometer range size and a close to neutral charge. The nanoparticles demonstrate high photothermal conversion efficiency (PCE) and dramatically improved photostability, as compared with ICG. The in vitro cellular uptake and cytotoxicity studies further demonstrated that the ICG-J/CX nanoparticles enhance uptake and photothermal efficiency in comparison with ICG or non-formulated ICG-J, overall demonstrating that ICG-J/CX mediated photothermal therapy have significant potential for attaining cancer treatment.
Collapse
Affiliation(s)
- Marie Millard
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France; Université de Lorraine, CNRS UMR 7039, CRAN, F-54000 Nancy, France
| | - Yann Bernhard
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Nadia Canilho
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | | | - Stéphane Parant
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Maxime Mourer
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS UMR 7039, CRAN, F-54000 Nancy, France; Institut de Cancérologie de Lorraine, Unité de Recherche Translationnelle F-54000 Nancy, France.
| | - Andreea Pasc
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
13
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
14
|
Zhang L, Alimu G, Du Z, Yan T, Li H, Ma R, Lan Z, Yu Z, Alifu N, Sun K. Functionalized Magnetic Nanoparticles for NIR-Induced Photothermal Therapy of Potential Application in Cervical Cancer. ACS OMEGA 2023; 8:21793-21801. [PMID: 37360441 PMCID: PMC10286267 DOI: 10.1021/acsomega.3c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Photothermal therapy (PTT) holds great promise for cancer treatment with its effective ablation of solid tumors. As the essential core point, photothermal agents (PTAs) with excellent photothermal properties and good biocompatibility could help to fulfill highly efficient PTT. Herein, a novel type of nanoplatform Fe3O4@PDA/ICG (FPI) nanoparticle (NP) was designed and synthesized, which was composed of magnetic Fe3O4 and near-infrared excitable indocyanine green via encapsulation of polydopamine. The FPI NPs showed spherical structures in shape with uniform distribution and good chemical stability. Under 793 nm laser irradiation, FPI NPs could generate hyperthermia of 54.1 °C and photothermal conversion efficiency of 35.21%. The low cytotoxicity of FPI NPs was further evaluated and confirmed on HeLa cells with a high survival rate (90%). Moreover, under laser irradiation (793 nm), FPI NPs showed effective photothermal therapeutic characteristics for HeLa cells. Therefore, FPI NPs, as one of the promising PTAs, have great potential in the field of PTT for tumor treatment.
Collapse
Affiliation(s)
- Linxue Zhang
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/School of Medical Engineering and
Technology, Xinjiang Medical University, Urumqi 830054, China
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Gulinigaer Alimu
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/School of Medical Engineering and
Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Zhong Du
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical
University, Urumqi 830054, China
| | - Ting Yan
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/School of Medical Engineering and
Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Hui Li
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/School of Medical Engineering and
Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Rong Ma
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical
University, Urumqi 830054, China
| | - Zhongwen Lan
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Zhong Yu
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| | - Nuernisha Alifu
- State
Key Laboratory of Pathogenesis, Prevention, and Treatment of High
Incidence Diseases in Central Asia/School of Medical Engineering and
Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Ke Sun
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
15
|
Khurana D, Kumar Shaw A, Tabassum M, Ahmed M, Shukla SK, Soni S. Gold Nanoblackbodies-based Multifunctional Nanocomposite for Multimodal Cancer Therapy. Int J Pharm 2023:123112. [PMID: 37302667 DOI: 10.1016/j.ijpharm.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Multifunctional nanocomposites are of potential use to achieve complete tumor elimination and, thus, to avoid tumor recurrence. Herein, polydopamine (PDA)-based gold nanoblackbodies (AuNBs) loaded with indocyanine green (ICG) and Doxorubicin (DOX) termed as A-P-I-D nanocomposite were investigated for multimodal plasmonic photothermal-photodynamic-chemotherapy. Upon near-infrared (NIR) irradiation, A-P-I-D nanocomposite showed enhanced photothermal conversion efficiency of 69.2% compared to bare AuNBs (62.9%) due to the presence of ICG, along with ROS (1O2) generation as well as enhanced DOX release. On assessment of therapeutic effects on breast cancer (MCF-7) and melanoma (B16F10) cell lines, A-P-I-D nanocomposite showed significantly lower cell viabilities of 45.5% and 24% compared to 79.3% and 76.8% for AuNBs. Fluorescence images of stained cells revealed characteristic signs of apoptotic mode of cell death, with almost complete damage on A-P-I-D nanocomposite+NIR treated cells. Further, on evaluation of photothermal performance through breast tumor-tissue mimicking phantoms, A-P-I-D nanocomposite provided required thermal ablation temperatures within the tumor along with the potential for the elimination of residual cancerous cells through photodynamic therapy and chemotherapy. Overall, this study demonstrates that A-P-I-D nanocomposite+NIR provides better therapeutic outcome on cell lines and enhanced photothermal performance on breast tumor-tissue mimicking phantoms to be a promising agent for multimodal cancer therapy.
Collapse
Affiliation(s)
- Divya Khurana
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amit Kumar Shaw
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Manzoor Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanket K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Chandigarh-160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
16
|
Tang W, Kang J, Yang L, Lin J, Song J, Zhou D, Ye F. Thermosensitive nanocomposite components for combined photothermal-photodynamic therapy in liver cancer treatment. Colloids Surf B Biointerfaces 2023; 226:113317. [PMID: 37105064 DOI: 10.1016/j.colsurfb.2023.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), have great application prospects in the field of biomedical science due to high precision and non-invasiveness. Because of the limited therapeutic efficacy of single phototherapy, researchers start to focus on combined PTT-PDT. Here, we designed a composite nanomaterial for PTT-PDT. H-TiO2 mesoporous spheres were prepared by sol-gel method and hydrogenation treatment. After modification with polydopamine (PDA), they were combined with indocyanine green (ICG) and NPe6 photosensitizers and coated by thermosensitive liposomes to prepare H-TiO2 @PDA@ICG@NPe6 @Lipo nanocomposite component. The results indicated a substantial improvement of the component in the aspects of spectral response range, photothermal conversion efficiency and light absorption performance by modification and photosensitizers, in the absence of any toxicities on cells. Thermal induction and sequential irradiation with 808 nm and 664 nm lasers induced the aggregation of H-TiO2 @PDA@ICG@NPe6 @Lipo at the tumor site to generate hyperthermia and massive reactive oxygen species (ROS), resulting in decreased cell activity or even cell apoptosis and restrained growth of allograft tumors. These findings underscore the favorable effects of H-TiO2 @PDA@ICG@NPe6 @Lipo on the combined phototherapies and provide approaches for the development of nano-drugs in the context of liver cancer.
Collapse
Affiliation(s)
- Weiwei Tang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Jiapeng Kang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jialin Lin
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jing Song
- Xiamen University Laboratory Animal Center, Xiamen, China
| | - Dan Zhou
- Institute of Cosmetology and Dermatology, Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, China.
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian Medical University, Xiamen, China; Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
17
|
Sun M, Gao P, Wang B, Li X, Shao D, Xu Y, Li L, Li Y, Zhu J, Li W, Xue Y. Polydopamine-functionalized selenium nanoparticles as an efficient photoresponsive antibacterial platform. RSC Adv 2023; 13:9998-10004. [PMID: 37006374 PMCID: PMC10052771 DOI: 10.1039/d2ra07737j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/18/2023] [Indexed: 03/31/2023] Open
Abstract
A photoresponsive therapeutic antibacterial platform was designed and constructed using polydopamine-functionalized selenium nanoparticles as a carrier loaded with indocyanine green (Se@PDA-ICG). The therapeutic platform was confirmed by characterization and the antibacterial activity of Se@PDA-ICG against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was investigated. Under 808 nm laser irradiation, the antibacterial rate of Se@PDA-ICG against E. coli and S. aureus was 100% at 125 μg mL-1. Furthermore, in a mouse wound infection model, the wound closure rate of the Se@PDA-ICG photoresponse group was 88.74% compared with 45.8% for the control group after 8 days of treatment, indicating that it could effectively kill bacteria and dramatically accelerate the wound healing process. These results suggested that Se@PDA-ICG could be a promising photo-activated antibacterial candidate material for biomedical applications.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
- Zhongshan Institute of Changchun University of Science and Technology Zhongshan 528437 China
| | - Ping Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
| | - Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
| | - Donghan Shao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
| | - Yan Xu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
- Zhongshan Institute of Changchun University of Science and Technology Zhongshan 528437 China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
- Zhongshan Institute of Changchun University of Science and Technology Zhongshan 528437 China
| | - Jianwei Zhu
- Zhongshan Institute of Changchun University of Science and Technology Zhongshan 528437 China
| | - Wenliang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun 130022 China
- Jilin Medical University Jilin 132013 China
| | | |
Collapse
|
18
|
Zhang J, Zhang K, Hao Y, Yang H, Wang J, Zhang Y, Zhao W, Ma S, Mao C. Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor. J Colloid Interface Sci 2023; 633:679-690. [PMID: 36473358 DOI: 10.1016/j.jcis.2022.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The limited penetration depth of nanodrugs in the tumor and the severe hypoxia inside the tumor significantly reduce the efficacy of photothermal-photodynamic synergistic therapy (PTT-PDT). Here, we synthesized a methoxypolyethylene glycol amine (mPEG-NH2)-modified walnut-shaped polydopamine nanomotor (PDA-PEG) driven by near-infrared light (NIR). At the same time, it also loaded the photosensitizer indocyanine green (ICG) via electrostatic/hydrophobicinteractions and chelated with ferric ion (Fe3+). Under the irradiation of NIR, the asymmetry of PDA-PEG morphology led to the asymmetry of local photothermal effects and the formation of thermal gradient, which can make the nanomotor move autonomously. This ability of autonomous movement was proved to be used to improve the permeability of the nanomotor in three-dimensional (3D) tumor sphere. Fe3+ can catalyze endogenous hydrogen peroxide to produce oxygen, so as to overcome the hypoxia of tumor microenvironment and thereby generate more singlet oxygen to kill tumor cells. Animal experiments in vivo confirmed that the nanomotors had a good PTT-PDT synergistic treatment effect. The introduction of nanomotor technology has brought new ideas for cancer optical therapy.
Collapse
Affiliation(s)
- Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ke Zhang
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yijie Hao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongna Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Shenglin Ma
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
19
|
Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022; 14:pharmaceutics14081697. [PMID: 36015322 PMCID: PMC9415007 DOI: 10.3390/pharmaceutics14081697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Aggressive glioblastoma (GBM) has no known treatment as a primary brain tumor. Since the cancer is so heterogeneous, an immunosuppressive tumor microenvironment (TME) exists, and the blood–brain barrier (BBB) prevents chemotherapeutic chemicals from reaching the central nervous system (CNS), therapeutic success for GBM has been restricted. Drug delivery based on nanocarriers and nanotechnology has the potential to be a handy tool in the continuing effort to combat the challenges of treating GBM. There are various new therapies being tested to extend survival time. Maximizing therapeutic effectiveness necessitates using many treatment modalities at once. In the fight against GBM, combination treatments outperform individual ones. Combination therapies may be enhanced by using nanotechnology-based delivery techniques. Nano-chemotherapy, nano-chemotherapy–radiation, nano-chemotherapy–phototherapy, and nano-chemotherapy–immunotherapy for GBM are the focus of the current review to shed light on the current status of innovative designs.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zahra Talaie
- School of Biology, Nour Danesh Institute of Higher Education, Isfahan 84156-83111, Iran
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
20
|
Khurana D, Dudi R, Shukla SK, Singh D, Mondhe DM, Soni S. Gold nanoblackbodies mediated plasmonic photothermal cancer therapy for melanoma. Nanomedicine (Lond) 2022; 17:1323-1338. [PMID: 36136404 DOI: 10.2217/nnm-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Gold nanoblackbodies (AuNBs)-mediated plasmonic photothermal cancer therapy was investigated through melanoma-bearing mice. Materials & methods: Polydopamine-coated Au nanoclusters were synthesized, termed AuNBs and PEGylated AuNBs (AuNBs-PEG). The photothermal response of AuNBs-PEG was evaluated upon low-intensity broadband near-infrared irradiation (785/62 nm; 0.9 Wcm-2), and cytotoxicity was assessed on B16-F10 cells. Further, the therapeutic potential of intravenously administered AuNBs-PEG was evaluated on B16-F10 melanoma in C57BL/6 mice. Results: AuNBs-PEG showed an excellent photothermal response (photothermal conversion efficiency of 60.3%), robust photothermal stability and no cytotoxicity. For AuNB-mediated plasmonic photothermal therapy, an average temperature of 63°C was attained within 5 min of irradiation, and tumors were eradicated. Conclusion: AuNBs-PEG are promising photothermal agents for treating melanoma through low-intensity broadband near-infrared irradiation.
Collapse
Affiliation(s)
- Divya Khurana
- CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Dudi
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sanket K Shukla
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Deepika Singh
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | | | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Bhogale D, Mazahir F, Yadav AK. Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders. Mol Neurobiol 2022; 59:4806-4824. [PMID: 35618981 DOI: 10.1007/s12035-022-02882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrate the blood brain barrier. On long-term use, they may cause CNS toxicity due to accumulation in the brain. So nanodiamonds could prove as a promising approach in the brain targeting of the bioactive and to treat many neurological disorders such as Alzheimer's disease, Parkinson's disease, brain tumor (glioblastoma), HIV, amyotrophic multiple sclerosis, Huntington disease, stroke (cerebrovascular attack), batten disease, schizophrenia, epilepsy, and bacterial infections (encephalitis, sepsis, and meningitis) due to their ability to penetrate the blood-brain barrier and owing to their excellent surface properties, i.e., nano size and high surface area, ease of functionalization, multiple drug binding, and biocompatibility; they can be useful for brain targeted drug delivery with minimal side effects.
Collapse
Affiliation(s)
- Deepali Bhogale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
23
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
24
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
25
|
Liu X, Xu N, Pu X, Wang J, Liao X, Huang Z, Yin G. Combined photothermal-photodynamic therapy by indocyanine green loaded polydopamine nanoparticles enhances anti-mammary gland tumor efficacy. J Mater Chem B 2022; 10:4605-4614. [DOI: 10.1039/d2tb00565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various nano-targeted drug delivery systems have been developed for combined photothermal-photodynamic (PTT-PDT) treatment for tumors due to the better outcomes compared with monomodality. Here, we constructed a facile two-step method...
Collapse
|
26
|
Battaglini M, Carmignani A, Martinelli C, Colica J, Marino A, Doccini S, Mollo V, Santoro F, Bartolucci M, Petretto A, Santorelli FM, Ciofani G. In vitro study of polydopamine nanoparticles as protective antioxidant agents in fibroblasts derived from ARSACS patients. Biomater Sci 2022; 10:3770-3792. [DOI: 10.1039/d2bm00729k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species (ROS) are active molecules involved in several biological functions. When the production of ROS is not counterbalanced by the action of protective antioxidant mechanisms present in living...
Collapse
|
27
|
Pan W, Chen W, Min Y, Wang J, Yang Z, Xu T, Yu F, Shen G, Hu Y, Ma X. ICG-Loaded PEG-Modified Black Phosphorus Nanosheets for Fluorescence Imaging-Guided Breast Cancer Therapy. ACS OMEGA 2021; 6:35505-35513. [PMID: 34984282 PMCID: PMC8717538 DOI: 10.1021/acsomega.1c04909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Indocyanine green (ICG) has been used in various surgical navigation systems and plays an important role in intraoperative imaging diagnosis. However, the poor photostability and unsatisfactory tumor-targeting ability have limited its broad application prospects. In the decades, the construction of a nanodrug delivery system for tumor-targeting diagnosis and therapy has become a research hotspot. Black phosphorus nanosheets (BPNS), as a new kind of biodegradable nanomaterials, have the advantages of high loading capacity, good biocompatibility, tumor targeting, and photothermal effect over other two-dimensional (2D) reported nanomaterials. Herein, ICG-loaded poly(ethylene glycol) (PEG)-modified BPNS (ICG@BPNS-PEG) nanocomposites are constructed to improve the tumor-targeting capacity and guide photothermal therapy through real-time fluorescence imaging. In this study, ICG@BPNS-PEG nanocomposites with a suitable size (240 ± 28 nm) have been successfully constructed. The photostability of ICG@BPNS-PEG nanocomposites surpassed that of free ICG after four on-off cycles of near laser irradiation (NIR). Moreover, ICG@BPNS-PEG nanocomposites have enhanced photothermal conversion ability. The cellular uptake result through flow cytometry showed that ICG@BPNS-PEG nanocomposites could be swallowed easily owing to the suitable size and passive cellular uptake. In addition, the cytotoxicity evaluation of MCF-7, 4T1 breast cancer cells, and healthy RPE cells through the MTT assay demonstrated that ICG@BPNS-PEG nanocomposites have lower cytotoxicity and good cellular compatibility without irradiation. However, the cytotoxicity and live/dead staining proved that ICG@BPNS-PEG nanocomposites have satisfactory photothermal therapeutic effects when irradiated. In the 4T1-bearing mice model, the fluorescence imaging after intravenous injection of nanocomposites showed that ICG@BPNS-PEG nanocomposites have superior passive tumor targeting accumulation through the enhanced permeability and retention (EPR) effect compared with that of free ICG. Also, changes in tumor volume showed a remarkable tumor growth inhibition effect compared with other groups. Moreover, the results of hematoxylin-eosin (H&E) staining of major organs in 4T1-bearing mice also demonstrated that the nanocomposites have good biocompatibility. Therefore, the constructed ICG@BPNS-PEG nanocomposites have substantial potential in breast cancer therapy.
Collapse
Affiliation(s)
- Wanwan Pan
- Department
of Thyroid and Breast Surgery, The First
Affiliated Hospital of University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Weijian Chen
- State
Key Laboratory of Fire Science, University
of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yuanzeng Min
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Chemistry,
Department of Bio-X Interdisciplinary Science at Hefei National Laboratory
(HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jing Wang
- Department
of Thyroid and Breast Surgery, The First
Affiliated Hospital of University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Zhenye Yang
- Hefei
National Laboratory for Physical Sciences at Microscale, The CAS Key
Laboratory of Innate Immunity and Chronic Disease, School of Basic
Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Tian Xu
- Hefei
National Laboratory for Physical Sciences at Microscale, The CAS Key
Laboratory of Innate Immunity and Chronic Disease, School of Basic
Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Fazhi Yu
- Hefei
National Laboratory for Physical Sciences at Microscale, The CAS Key
Laboratory of Innate Immunity and Chronic Disease, School of Basic
Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Guodong Shen
- Department
of Geriatrics, The First Affiliated Hospital
of University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Yuan Hu
- State
Key Laboratory of Fire Science, University
of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaopeng Ma
- Department
of Thyroid and Breast Surgery, The First
Affiliated Hospital of University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
28
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
29
|
Jia C, Liu H, Hu Y, Wu H, Zhu C, Zhang Y, Wang S, Huang M. NIR‐Responsive Fe
3
O
4
@MSN@PPy‐PVP Nanoparticles as the Nano‐Enzyme for Potential Tumor Therapy. ChemistrySelect 2021. [DOI: 10.1002/slct.202101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chengzheng Jia
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Huiwen Liu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Yunxia Hu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Chunping Zhu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Yuxuan Zhang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
30
|
Coy E, Iatsunskyi I, Colmenares JC, Kim Y, Mrówczyński R. Polydopamine Films with 2D-like Layered Structure and High Mechanical Resilience. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23113-23120. [PMID: 33969981 PMCID: PMC8289185 DOI: 10.1021/acsami.1c02483] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 05/14/2023]
Abstract
Highly oriented, layered, and mechanically resilient films of polydopamine (PDA) have been synthesized from the air/water interface. The films show a unique layered structure, as shown by scanning and transmission electron studies (SEM/TEM) and X-ray diffraction analysis (XRD), which resemble that of 2D layered materials. The films exhibit a composition typical of PDA-based materials, as evidenced by X-ray photoelectron spectroscopy (XPS); moreover, the samples present the distinctive resonance modes of PDA-based nanomaterials in Raman and infrared spectroscopy (FTIR) experiments. The presence of highly ordinated 3-4 protomolecule stacking, taking place at the air/water interface, with a unique eumelanin-like supramolecular arrangement is presented. Moreover, the films show superior mechanical resilience with E = 13 ± 4 GPa and H = 0.21 ± 0.03 GPa, as revealed by nanoindentation experiments, making them highly resilient and easily transferable. Finally, the ordering induced by the interface opens many possibilities for further studies, including those regarding the supramolecular structure on PDA due to their similarity to 2D layered materials.
Collapse
Affiliation(s)
- Emerson Coy
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Igor Iatsunskyi
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Juan Carlos Colmenares
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yeonho Kim
- Research
Institute of Basic Sciences, Incheon National
University, Incheon 22012, Republic of Korea
| | - Radosław Mrówczyński
- Faculty
of Chemistry, Adam Mickiewicz University, ul. Uniwersytet Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
31
|
Neelgund GM, Oki A, Bandara S, Carson L. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. J Mater Chem B 2021; 9:1792-1803. [PMID: 33393530 DOI: 10.1039/d0tb02366c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we present the rational synthesis of a multimode photothermal agent, NGO-FA-CuS, for the advancement of photothermal therapy of cancer. The hierarchical architecture created in NGO-FA-CuS was attained by the covalent conjugation of folic acid (FA) to nanographene oxide (NGO) through amide bonding, followed by the hydrothermal deposition of CuS nanoflowers. In this approach, instead of mere mixing or deposition, FA was covalently bonded to NGO, which helped in retaining their intrinsic properties after binding and allowed to access them in the resulting hybrid nanostructure. In this specifically designed photothermal agent, NGO-FA-CuS, each component has an explicit task, i.e., NGO, FA and CuS act as the quencher, cancer cell-targeting moiety and photothermal transduction agent, respectively. Prior to the grafting of FA molecules and the deposition of CuS nanoflowers, sulfonic acid groups were introduced into NGO to provide stability under physiological conditions. Under irradiation using a 980 nm laser, NGO-FA-CuS was able to attain a temperature of 63.1 °C within 5 min, which is far beyond the survival temperature for cancer cells. Therefore, the resulting temperature recorded for NGO-FA-CuS was sufficient to induce hyperthermia in cancer cells to cause their death. When coming into contact with cancer cells, NGO-FA-CuS can cause a rapid increase in the temperature of their nucleus, destroy the genetic substances, and ultimately lead to exhaustive apoptosis under illumination using a near-infrared (NIR) laser. An excellent photothermal efficiency of 46.2% under illumination using a 980 nm laser and outstanding cytotoxicity against HeLa, SKOV3 and KB cells were attained with NGO-FA-CuS. Moreover, NGO-FA-CuS displays exceptional persistent photo-stability without photo-corrosiveness. The photothermal effect of NGO-FA-CuS was found to be dependent on its concentration and the power density of the laser source. It was found that its cytotoxicity toward cancer cells was enhanced with an increase in the concentration of NGO-FA-CuS and the incubation period.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Aderemi Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Subhani Bandara
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
32
|
Bastiancich C, Da Silva A, Estève MA. Photothermal Therapy for the Treatment of Glioblastoma: Potential and Preclinical Challenges. Front Oncol 2021; 10:610356. [PMID: 33520720 PMCID: PMC7845694 DOI: 10.3389/fonc.2020.610356] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive primary malignant brain tumor and finding effective therapies is a pharmaceutical challenge and an unmet medical need. Photothermal therapy may be a promising strategy for the treatment of GBM, as it allows the destruction of the tumor using heat as a non-chemical treatment for disease bypassing the GBM heterogeneity limitations, conventional drug resistance mechanisms and side effects on peripheral healthy tissues. However, its development is hampered by the distinctive features of this tumor. Photoabsorbing agents such as nanoparticles need to reach the tumor site at therapeutic concentrations, crossing the blood-brain barrier upon systemic administration. Subsequently, a near infrared light irradiating the head must cross multiple barriers to reach the tumor site without causing any local damage. Its power intensity needs to be within the safety limit and its penetration depth should be sufficient to induce deep and localized hyperthermia and achieve tumor destruction. To properly monitor the therapy, imaging techniques that can accurately measure the increase in temperature within the brain must be used. In this review, we report and discuss recent advances in nanoparticle-mediated plasmonic photothermal therapy for GBM treatment and discuss the preclinical challenges commonly faced by researchers to develop and test such systems.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marie-Anne Estève
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
33
|
Teng CW, Huang V, Arguelles GR, Zhou C, Cho SS, Harmsen S, Lee JYK. Applications of indocyanine green in brain tumor surgery: review of clinical evidence and emerging technologies. Neurosurg Focus 2021; 50:E4. [PMID: 33386005 DOI: 10.3171/2020.10.focus20782] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
Indocyanine green (ICG) is a water-soluble dye that was approved by the FDA for biomedical purposes in 1956. Initially used to measure cardiocirculatory and hepatic functions, ICG's fluorescent properties in the near-infrared (NIR) spectrum soon led to its application in ophthalmic angiography. In the early 2000s, ICG was formally introduced in neurosurgery as an angiographic tool. In 2016, the authors' group pioneered a novel technique with ICG named second-window ICG (SWIG), which involves infusion of a high dose of ICG (5.0 mg/kg) in patients 24 hours prior to surgery. To date, applications of SWIG have been reported in patients with high-grade gliomas, meningiomas, brain metastases, pituitary adenomas, craniopharyngiomas, chordomas, and pinealomas.The applications of ICG have clearly expanded rapidly across different specialties since its initial development. As an NIR fluorophore, ICG has advantages over other FDA-approved fluorophores, all of which are currently in the visible-light spectrum, because of NIR fluorescence's increased tissue penetration and decreased autofluorescence. Recently, interest in the latest applications of ICG in brain tumor surgery has grown beyond its role as an NIR fluorophore, extending into shortwave infrared imaging and integration into nanotechnology. This review aims to summarize reported clinical studies on ICG fluorescence-guided surgery of intracranial tumors, as well as to provide an overview of the literature on emerging technologies related to the utility of ICG in neuro-oncological surgeries, including the following aspects: 1) ICG fluorescence in the NIR-II window; 2) ICG for photoacoustic imaging; and 3) ICG nanoparticles for combined diagnostic imaging and therapy (theranostic) applications.
Collapse
Affiliation(s)
- Clare W Teng
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vincent Huang
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriel R Arguelles
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cecilia Zhou
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve S Cho
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| | - Stefan Harmsen
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| | - John Y K Lee
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| |
Collapse
|
34
|
Jia C, Wu H, Luo K, Hao W, Wang S, Huang M. Magnetic Silica Nanosystems With NIR-Responsive and Redox Reaction Capacity for Drug Delivery and Tumor Therapy. Front Chem 2020; 8:567652. [PMID: 33195055 PMCID: PMC7643033 DOI: 10.3389/fchem.2020.567652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, more and more researches have focused on tumor photothermal therapy and chemodynamic therapy. In this study, we prepared a multifunctional nanomaterial with potential applications in the above area. The Fe3O4 nanoparticles were synthesized with suitable size and uniformity and then coated with mesoporous silica and polydopamine. The unique core-shell structure not only improves the drug loading of the magnetic nanomaterials, but also produces high photothermal conversion efficiency. Furthermore, the reducibility of polydopamine was found to be able to reduce Fe3+ to Fe2+ and thus promote the production of hydroxyl radicals that can kill the tumor cells based on the Fenton reaction. The magnetic nanomaterials are capable of simultaneously combining photothermal and chemodynamic therapy and permit the efficient treatment for tumors in the future.
Collapse
Affiliation(s)
- Chengzheng Jia
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Hang Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Keyi Luo
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Weiju Hao
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
36
|
Akakuru OU, Liu C, Iqbal MZ, Dar GI, Yang G, Qian K, Nosike EI, Xing J, Zhang Z, Li Y, Li J, Wu A. A Hybrid Organo-Nanotheranostic Platform of Superlative Biocompatibility for Near-Infrared-Triggered Fluorescence Imaging and Synergistically Enhanced Ablation of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002445. [PMID: 32954652 DOI: 10.1002/smll.202002445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou, 310018, China
| | - Gohar Ijaz Dar
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gao Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Kun Qian
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis Ikechukwu Nosike
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| |
Collapse
|
37
|
Fedorenko V, Viter R, Mrówczyński R, Damberga D, Coy E, Iatsunskyi I. Synthesis and photoluminescence properties of hybrid 1D core-shell structured nanocomposites based on ZnO/polydopamine. RSC Adv 2020; 10:29751-29758. [PMID: 35518237 PMCID: PMC9056168 DOI: 10.1039/d0ra04829a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
In the present work, we report on the modelling of processes at the zinc oxide and polydopamine (ZnO/PDA) interface. The PDA layer was deposited onto ZnO nanorods (NRs) via chemical bath deposition. The defect concentrations in ZnO before and after PDA deposition were calculated and analysed. The ZnONRs/PDA core–shell nanostructures were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) measurements, and diffuse reflectance spectroscopy. The TEM and electron energy loss spectroscopy (EELS) measurements confirmed the conformal coating of PDA, while the PL emission from ZnO and ZnONRs/PDA samples showed a reduction of intensity after the PDA deposition. The decrease of defect concentration participating in PL and quantum efficiency explains the PL reduction. Finally, the observed decrease of activation energies and a shift of the PL peaks are attributed to the formation of an additional local electrical field between the PDA and ZnO nanostructures. The results shown in this study provide a unique insight into the optical and electronic processes of the ZnO/PDA interface.![]()
Collapse
Affiliation(s)
- Viktoriia Fedorenko
- Institute of Atomic Physics and Spectroscopy, University of Latvia Jelgavas 3 Riga LV-1004 Latvia .,Center for Collective Use of Scientific Equipment, Sumy State University 31, Sanatornaya St. 40018 Sumy Ukraine
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia Jelgavas 3 Riga LV-1004 Latvia .,Center for Collective Use of Scientific Equipment, Sumy State University 31, Sanatornaya St. 40018 Sumy Ukraine
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan Wszechnicy Piastowskiej str. 3 61-614 Poznan Poland
| | - Daina Damberga
- Institute of Atomic Physics and Spectroscopy, University of Latvia Jelgavas 3 Riga LV-1004 Latvia
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan Wszechnicy Piastowskiej str. 3 61-614 Poznan Poland
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan Wszechnicy Piastowskiej str. 3 61-614 Poznan Poland
| |
Collapse
|
38
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
39
|
Poly(ε-caprolactone) (PCL) Hollow Nanoparticles with Surface Sealability and On-Demand Pore Generability for Easy Loading and NIR Light-Triggered Release of Drug. Pharmaceutics 2019; 11:pharmaceutics11100528. [PMID: 31614927 PMCID: PMC6835703 DOI: 10.3390/pharmaceutics11100528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
A new system for the easy loading and NIR light-triggered release of drugs is introduced. It consists of poly(ε-caprolactone) (PCL) hollow nanoparticles with surface openings containing a biodegradable fatty acid with phase-change ability and a biocompatible photothermal agent. These openings, which can enhance the connectivity between the interior and the exterior, enable the easy loading of drug molecules into the interior voids, and their successive sealing ensures a stable encapsulation of the drug. Upon exposure to an external NIR light irradiation, the photothermal agent generates heat that raises the local temperature of the hollow particles above the melting point of the fatty acid, leading to the formation of nanopores on their shells, and consequently, the instant release of the encapsulated drug molecules through the pores. The synergistic activity of the hyperthermia effect from the photothermal agent and the NIR-triggered release of the drug molecules results in noticeable anticancer efficacy.
Collapse
|
40
|
Harvey S, Raabe M, Ermakova A, Wu Y, Zapata T, Chen C, Lu H, Jelezko F, Ng DYW, Weil T. Transferrin‐Coated Nanodiamond–Drug Conjugates for Milliwatt Photothermal Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sean Harvey
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Anna Ermakova
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Yingke Wu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Todd Zapata
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Chaojian Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - Hao Lu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Fedor Jelezko
- Institute for Quantum OpticsUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry IUlm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
| |
Collapse
|