1
|
Santhoshkumar P, Ramu D, Mahalakshmi L, Moses JA. 3D printed edible electronics: Components, fabrication approaches and applications. Biosens Bioelectron 2025; 272:117059. [PMID: 39752889 DOI: 10.1016/j.bios.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Dheetchanya Ramu
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
2
|
Ouedraogo LJ, Trznadel MJ, Kling M, Nasirian V, Borst AG, Shirsavar MA, Makowski A, McNamara MC, Montazami R, Hashemi NN. Hydrodynamic Assembly of Astrocyte Cells in Conductive Hollow Microfibers. Adv Biol (Weinh) 2024; 8:e2300455. [PMID: 37953458 DOI: 10.1002/adbi.202300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Indexed: 11/14/2023]
Abstract
The manufacturing of 3D cell scaffoldings provides advantages for modeling diseases and injuries as it enables the creation of physiologically relevant platforms. A triple-flow microfluidic device is developed to rapidly fabricate alginate/graphene hollow microfibers based on the gelation of alginate induced with CaCl2 . This five-channel microdevice actualizes continuous mild fabrication of hollow fibers under an optimized flow rate ratio of 300:200:100 µL min-1 . The polymer solution is 2.5% alginate in 0.1% graphene and a 30% polyethylene glycol solution is used as the sheath and core solutions. The biocompatibility of these conductive microfibers by encapsulating mouse astrocyte cells (C8D1A) within the scaffolds is investigated. The cells can successfully survive both the manufacturing process and prolonged encapsulation for up to 8 days, where there is between 18-53% of live cells on both the alginate microfibers and alginate/graphene microfibers. These unique 3D hollow scaffolds can significantly enhance the available surface area for nutrient transport to the cells. In addition, these conductive hollow scaffolds illustrate unique advantages such as 0.728 cm3 gr-1 porosity and two times more electrical conductivity in comparison to alginate scaffolds. The results confirm the potential of these scaffolds as a microenvironment that supports cell growth.
Collapse
Affiliation(s)
- Lionel J Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mychal J Trznadel
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - McKayla Kling
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alexandra G Borst
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | | | - Andrew Makowski
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Neuroscience Graduate Program, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
3
|
Nasirian V, Niaraki-Asli AE, Aykar SS, Taghavimehr M, Montazami R, Hashemi NN. Capacitance of Flexible Polymer/Graphene Microstructures with High Mechanical Strength. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:242-250. [PMID: 38389687 PMCID: PMC10880642 DOI: 10.1089/3dp.2022.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Carbon-modified fibrous structures with high biocompatibility have attracted much attention due to their low cost, sustainability, abundance, and excellent electrical properties. However, some carbon-based materials possess low specific capacitance and electrochemical performance, which pose significant challenges in developing electronic microdevices. In this study, we report a microfluidic-based technique of manufacturing alginate hollow microfibers incorporated by water dispersed modified graphene (bovine serum albumin-graphene). These architectures successfully exhibited enhanced conductivity ∼20 times higher than alginate hollow microfibers without any significant change in the inner dimension of the hollow region (220.0 ± 10.0 μm) compared with pure alginate hollow microfibers. In the presence of graphene, higher specific surface permeability, active ion adsorption sites, and shorter pathways were created. These continuous ion transport networks resulted in improved electrochemical performance. The desired electrochemical properties of the microfibers make alginate/graphene hollow fibers an excellent choice for further use in the development of flexible capacitors with the potential to be used in smart health electronics.
Collapse
Affiliation(s)
- Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Saurabh S. Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D Printing of Aqueous Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205255. [PMID: 36482162 DOI: 10.1002/smll.202205255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Biranche Tandon
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| |
Collapse
|
5
|
Abstract
Recent advances in 3D printing technologies and materials have enabled rapid development of innovative sensors for applications in different aspects of human life. Various 3D printing technologies have been adopted to fabricate biosensors or some of their components thanks to the advantages of these methodologies over the traditional ones, such as end-user customization and rapid prototyping. In this review, the works published in the last two years on 3D-printed biosensors are considered and grouped on the basis of the 3D printing technologies applied in different fields of application, highlighting the main analytical parameters. In the first part, 3D methods are discussed, after which the principal achievements and promising aspects obtained with the 3D-printed sensors are reported. An overview of the recent developments on this current topic is provided, as established by the considered works in this multidisciplinary field. Finally, future challenges on the improvement and innovation of the 3D printing technologies utilized for biosensors production are discussed.
Collapse
|
6
|
Niaraki A, McNamara MC, Montazami R, Hashemi NN. Graphene Microelectrodes for Real-Time Impedance Spectroscopy of Neural Cells. ACS APPLIED BIO MATERIALS 2022; 5:113-122. [PMID: 35014836 DOI: 10.1021/acsabm.1c00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the changes in the electrochemical properties of neural cells upon exposure to stress factors imparts vital information about the conditions prior to their death. This study presents a graphene-based biosensor for real-time monitoring of N27 rat dopaminergic neural cells which characterizes cell adhesion and cytotoxicity factors through impedance spectroscopy. The aim was to monitor the growth of the entire cell network via a nonmetallic flexible electrode array. Therefore, a water-based graphene solution was formulized as a conductive ink, 3D-printed into a flexible substrate through an electrohydrodynamic approach, resulting in electrodes with a conductivity of 6750 s/m. The presented high-throughput method enabled microscale monitoring of the entire cell network via the design of PDMS-based growth channels. The electrical resistance of the cell network was measured continuously along with their network density, constituting a mean density of 1890 cell/mm2 at full cell confluency. The results demonstrate the applicability of the impedance-based sensing of the cell network for rapid screening of the cytotoxic elements, and the real-time effect of UV exposure on dopaminergic neural cells was reported as an immediate application of the device.
Collapse
Affiliation(s)
- Amir Niaraki
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Kakarla M, Nian Q, Azeredo B, Chen X, Jin K, Vernon B, Lott DG, Cornella JL, Shefi O, Miquelard-Garnier G, Yang Y, Song K. 3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100817. [PMID: 34176201 DOI: 10.1002/smll.202100817] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Indexed: 05/12/2023]
Abstract
3D printing (additive manufacturing (AM)) has enormous potential for rapid tooling and mass production due to its design flexibility and significant reduction of the timeline from design to manufacturing. The current state-of-the-art in 3D printing focuses on material manufacturability and engineering applications. However, there still exists the bottleneck of low printing resolution and processing rates, especially when nanomaterials need tailorable orders at different scales. An interesting phenomenon is the preferential alignment of nanoparticles that enhance material properties. Therefore, this review emphasizes the landscape of nanoparticle alignment in the context of 3D printing. Herein, a brief overview of 3D printing is provided, followed by a comprehensive summary of the 3D printing-enabled nanoparticle alignment in well-established and in-house customized 3D printing mechanisms that can lead to selective deposition and preferential orientation of nanoparticles. Subsequently, it is listed that typical applications that utilized the properties of ordered nanoparticles (e.g., structural composites, heat conductors, chemo-resistive sensors, engineered surfaces, tissue scaffolds, and actuators based on structural and functional property improvement). This review's emphasis is on the particle alignment methodology and the performance of composites incorporating aligned nanoparticles. In the end, significant limitations of current 3D printing techniques are identified together with future perspectives.
Collapse
Affiliation(s)
- Weiheng Xu
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Mounika Kakarla
- Department of Materials Science and Engineering, Ira A. Fulton Schools for Engineering, Arizona State University, Tempe, 501 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Qiong Nian
- Department of Mechanical Engineering, and Multi-Scale Manufacturing Material Processing Lab (MMMPL), Ira A. Fulton Schools for Engineering, Arizona State University, 501 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Bruno Azeredo
- The Polytechnic School (TPS), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA
| | - Xiangfan Chen
- Advanced Manufacturing and Functional Devices (AMFD) Laboratory, Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, AZ, 85212, USA
| | - Kailong Jin
- Department of Chemical Engineering, School for Engineering Matter, Transport and Energy (SEMTE), and Biodesign Institute Center for Sustainable Macromolecular Materials and Manufacturing (BCSM3), Arizona State University, 501 E. Tyler St., Tempe, AZ, 85287, USA
| | - Brent Vernon
- Department of Biomedical Engineering, Biomaterials Lab, School of Biological and Health Systems Engineering, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - David G Lott
- Department Otolaryngology, Division of Laryngology, College of Medicine, and Mayo Clinic Arizona Center for Regenerative Medicine, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Jeffrey L Cornella
- Professor of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Division of Gynecologic Surgery, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Orit Shefi
- Department of Engineering, Neuro-Engineering and Regeneration Laboratory, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Building 1105, Ramat Gan, 52900, Israel
| | - Guillaume Miquelard-Garnier
- laboratoire PIMM, UMR 8006, Arts et Métiers Institute of Technology, CNRS, CNAM, Hesam University, 151 boulevard de l'Hôpital, Paris, 75013, France
| | - Yang Yang
- Additive Manufacturing & Advanced Materials Lab, Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1323, USA
| | - Kenan Song
- Department of Manufacturing Engineering, Advanced Materials Advanced Manufacturing Laboratory (AMAML), Ira A. Fulton Schools for Engineering, Arizona State University, 6075 Innovation Way W., Mesa, AZ, 85212, USA
| |
Collapse
|
8
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
De Alwis S, Abbasi Shirsavar M, Singh S, Hashemi NN. Hydrodynamic cavitation for scalable exfoliation of few-layered graphene nanosheets. NANOTECHNOLOGY 2021; 32:505701. [PMID: 34431479 DOI: 10.1088/1361-6528/ac2096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
A scalable manufacturing method for the production of biocompatible fewlayered graphene nanosheets is developed using hydrodynamic cavitation. Scalable exfoliation is induced by employing hydrodynamic cavitation and a serum albumin protein. Unlike acoustic cavitation, the primary means of bubble collapse in hydrodynamic cavitation is caused laterally, thereby separating two adjacent flakes through a shear effect. In this process, bovine serum albumin, a known protein, was employed to act as an effective exfoliation agent and provide desired stability by preventing restacking of the graphene layers. This method was used to study the effect of time of graphene exfoliation in a novel hydrodynamic cavitation system. The fabricated products were characterized using Raman spectroscopy, Transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. The results showed that with increasing the time of exfoliation, the number of graphene layers decreased based on theI2D/IGratio but disorder increased based on theID/IGratio. At 3 h, theI2D/IGratio was at 0.39 and theID/IGratio was 0.25, while at 6 h theI2D/IGratio was 0.35 andID/IGratio was 0.29. The results of the theoretical and computational analysis this research outlines are needed to obtain an effective cavitation model that can be used to potentially improve graphene synthesis and quality. The captured images of bubble propagation in the solution imply that this fluidic phenomenon could assist the graphene exfoliation. To prove this, a simple cavitation model using a needle valve was designed. The needle valve cavitation setup was able to identify that cavitation assists in graphene exfoliation and this was proved using the graphene characterization data. Based on these findings, the simulation models were designed in ANSYS and COMSOL. Specifically, through the ANSYS simulation, we were able to calculate cavitation numbers for specific flow rates and fluid temperatures.
Collapse
Affiliation(s)
- Steven De Alwis
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, United States of America
| | - Mehran Abbasi Shirsavar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, United States of America
| | - Sarabjit Singh
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, United States of America
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, United States of America
- Department of Biomedical Engineering, Iowa State University, Ames, IA 50010, United States of America
| |
Collapse
|
10
|
Zobeiri H, Hunter N, Wang R, Wang T, Wang X. Direct Characterization of Thermal Nonequilibrium between Optical and Acoustic Phonons in Graphene Paper under Photon Excitation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004712. [PMID: 34194932 PMCID: PMC8224447 DOI: 10.1002/advs.202004712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has been widely used to measure thermophysical properties of 2D materials. The local intense photon heating induces strong thermal nonequilibrium between optical and acoustic phonons. Both first principle calculations and recent indirect Raman measurements prove this phenomenon. To date, no direct measurement of the thermal nonequilibrium between optical and acoustic phonons has been reported. Here, this physical phenomenon is directly characterized for the first time through a novel approach combining both electrothermal and optothermal techniques. While the optical phonon temperature is determined from Raman wavenumber, the acoustic phonon temperature is precisely determined using high-precision thermal conductivity and laser power absorption that are measured with negligible nonequilibrium among energy carriers. For graphene paper, the energy coupling factor between in-plane optical and overall acoustic phonons is found at (1.59-3.10) × 1015 W m-3 K-1, agreeing well with the quantum mechanical modeling result of 4.1 × 1015 W m-3 K-1. Under ≈1 µm diameter laser heating, the optical phonon temperature rise is over 80% higher than that of the acoustic phonons. This observation points out the importance of subtracting optical-acoustic phonon thermal nonequilibrium in Raman-based thermal characterization.
Collapse
Affiliation(s)
- Hamidreza Zobeiri
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nicholas Hunter
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Ridong Wang
- State Key Laboratory of Precision Measuring Technology and InstrumentsTianjin UniversityTianjin300072P. R. China
| | - Tianyu Wang
- Institute of ChemistryChinese Academy of ScienceBeijing100190P. R. China
| | - Xinwei Wang
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| |
Collapse
|
11
|
Thomas DG, De-Alwis S, Gupta S, Pecharsky VK, Mendivelso-Perez D, Montazami R, Smith EA, Hashemi NN. Protein-assisted scalable mechanochemical exfoliation of few-layer biocompatible graphene nanosheets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200911. [PMID: 34035934 PMCID: PMC8101280 DOI: 10.1098/rsos.200911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
A facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers. The latter is demonstrated by the excellent long-term dispersibility of exfoliated graphene in an aqueous BSA solution, which exemplifies a common biological medium. The development of such potentially scalable and toxin-free methods is critical for producing cost-effective biocompatible graphene, enabling numerous possible biomedical and biological applications. A methodical study was performed to identify the effect of time and varying concentrations of BSA towards graphene exfoliation. The fabricated product has been characterized using Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The BSA-FLG dispersion was then placed in media containing Astrocyte cells to check for cytotoxicity. It was found that lower concentrations of BSA-FLG dispersion had only minute cytotoxic effects on the Astrocyte cells.
Collapse
Affiliation(s)
- Deepak-George Thomas
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA
| | - Steven De-Alwis
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA
| | - Shalabh Gupta
- The Ames Laboratory, US Department of Energy, Ames, IA 50011-3020, USA
| | - Vitalij K. Pecharsky
- The Ames Laboratory, US Department of Energy, Ames, IA 50011-3020, USA
- Department of Material Science and Engineering, Iowa State University, Ames, IA, 50011-1096, USA
| | - Deyny Mendivelso-Perez
- The Ames Laboratory, US Department of Energy, Ames, IA 50011-3020, USA
- Department of Chemistry, Iowa State University, Ames, IA, 50011-1021, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA
| | - Emily A. Smith
- The Ames Laboratory, US Department of Energy, Ames, IA 50011-3020, USA
- Department of Chemistry, Iowa State University, Ames, IA, 50011-1021, USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2030, USA
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Utech T, Pötschke P, Simon F, Janke A, Kettner H, Paiva M, Zimmerer C. Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abce05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
Collapse
|
13
|
Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review. NANOMATERIALS 2020; 10:nano10071300. [PMID: 32630782 PMCID: PMC7407564 DOI: 10.3390/nano10071300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/27/2020] [Indexed: 12/19/2022]
Abstract
In the present work, the state of the art of the most common additive manufacturing (AM) technologies used for the manufacturing of complex shape structures of graphene-based ceramic nanocomposites, ceramic and graphene-based parts is explained. A brief overview of the AM processes for ceramic, which are grouped by the type of feedstock used in each technology, is presented. The main technical factors that affect the quality of the final product were reviewed. The AM processes used for 3D printing of graphene-based materials are described in more detail; moreover, some studies in a wide range of applications related to these AM techniques are cited. Furthermore, different feedstock formulations and their corresponding rheological behavior were explained. Additionally, the most important works about the fabrication of composites using graphene-based ceramic pastes by Direct Ink Writing (DIW) are disclosed in detail and illustrated with representative examples. Various examples of the most relevant approaches for the manufacturing of graphene-based ceramic nanocomposites by DIW are provided.
Collapse
|
14
|
Zobeiri H, Xu S, Yue Y, Zhang Q, Xie Y, Wang X. Effect of temperature on Raman intensity of nm-thick WS 2: combined effects of resonance Raman, optical properties, and interface optical interference. NANOSCALE 2020; 12:6064-6078. [PMID: 32129391 DOI: 10.1039/c9nr10186a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Temperature dependent Raman intensity of 2D materials features very rich information about the material's electronic structure, optical properties, and nm-level interface spacing. To date, there still lacks rigorous consideration of the combined effects. This renders the Raman intensity information less valuable in material studies. In this work, the Raman intensity of four supported multilayered WS2 samples are studied from 77 K to 757 K under 532 nm laser excitation. Resonance Raman scattering is observed, and we are able to evaluate the excitonic transition energy of B exciton and its broadening parameters. However, the resonance Raman effects cannot explain the Raman intensity variation in the high temperature range (room temperature to 757 K). The thermal expansion mismatch between WS2 and Si substrate at high temperatures (room temperature to 757 K) make the optical interference effects very strong and enhances the Raman intensity significantly. This interference effect is studied in detail by rigorously calculating and considering the thermal expansion of samples, the interface spacing change, and the optical indices change with temperature. Considering all of the above factors, it is concluded that the temperature dependent Raman intensity of the WS2 samples cannot be solely interpreted by its resonance behavior. The interface optical interference impacts the Raman intensity more significantly than the change of refractive indices with temperature.
Collapse
Affiliation(s)
- Hamidreza Zobeiri
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Shen Xu
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Yanan Yue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qianying Zhang
- College of Metallurgy and Material Engineering, Chongqing University of Science & Technology, University Town, Huxi Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yangsu Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, People's Republic of China.
| | - Xinwei Wang
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|