1
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
A N B, O D H, N S K, A V Z, B B D. Immunodetection of Poorly Soluble Substances: Limitations and Their Overcoming. Crit Rev Anal Chem 2024:1-26. [PMID: 39360478 DOI: 10.1080/10408347.2024.2402835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments. Thus, obtaining immunoreactants and implementing immunoassays of these substances need special methodological solutions. Hydrophobicity of antigens as well as their limited ability to functionalization and conjugation are often overlooked when developing immunoassays for these compounds. The main key finding is the possibility to influence the behavior of hydrophobic compounds for immunoassays, which requires specific approaches summarized in the review. Using the examples of two groups of compounds-surfactants (alkyl- and bisphenols) and fullerenes, we systematized the existing knowledge and experience in the development of immunoassays. This review addresses the challenges of immunodetection of poorly soluble substances and proposes solutions such as the use of hydrotropes, other solubilization techniques, and alternative receptors (aptamers and molecularly imprinted polymers).
Collapse
Affiliation(s)
- Berlina A N
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Hendrickson O D
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Komova N S
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Zherdev A V
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Dzantiev B B
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
3
|
Yang W, Xia S, Jia X, Zhu Y, Li L, Jiang C, Ji H, Shi F. Utilizing surface-enhanced Raman spectroscopy for the adjunctive diagnosis of osteoporosis. Eur J Med Res 2024; 29:476. [PMID: 39343945 PMCID: PMC11440806 DOI: 10.1186/s40001-024-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoporosis (OP) is a chronic disease characterized by diminished bone mass and structural deterioration, ultimately leading to compromised bone strength and an increased risk of fractures. Diagnosis primarily relies on medical imaging findings and clinical symptoms. This study aims to explore an adjunctive diagnostic technique for OP based on surface-enhanced Raman scattering (SERS). Serum SERS spectra from the normal, low bone density, and osteoporosis groups were analyzed to discern OP-related expression profiles. This study utilized partial least squares (PLS) and support vector machine (SVM) algorithms to establish an OP diagnostic model. The combination of Raman peak assignments and spectral difference analysis reflected biochemical changes associated with OP, including amino acids, carbohydrates, and collagen. Using the PLS-SVM approach, sensitivity, specificity, and accuracy for screening OP were determined to be 77.78%, 100%, and 88.24%, respectively. This study demonstrates the substantial potential of SERS as an adjunctive diagnostic technology for OP.
Collapse
Affiliation(s)
- Weihang Yang
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Shuang Xia
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Xu Jia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Yuwei Zhu
- Orthopedics Department, Suzhou BOE Hospital, Suzhou, 215000, China
| | - Liang Li
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Cheng Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Hongjian Ji
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Fengchao Shi
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China.
| |
Collapse
|
4
|
Sung CL, Kao TT, Lin YC. Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1562. [PMID: 39404289 PMCID: PMC11477888 DOI: 10.3390/nano14191562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs' morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection.
Collapse
Affiliation(s)
- Chia-Ling Sung
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Tzung-Ta Kao
- Institute of Photonics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 82445, Taiwan
| | - Yu-Cheng Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan;
| |
Collapse
|
5
|
Peng Z, Yang Z. Optical blood glucose non-invasive detection and its research progress. Analyst 2024. [PMID: 39246261 DOI: 10.1039/d4an01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Blood glucose concentration is an important index for the diagnosis of diabetes, its self-monitoring technology is the method for scientific diabetes management. Currently, the typical household blood glucose meters have achieved great success in diabetes management, but they are discrete detection methods, and involve invasive blood sampling procedures. Optical detection technologies, which use the physical properties of light to detect the glucose concentration in body fluids non-invasively, have shown great potential in non-invasive blood glucose detection. This article summarized and analyzed the basic principles, research status, existing problems, and application prospects of different optical glucose detection technologies. In addition, this article also discusses the problems of optical detection technology in wearable sensors and perspectives on the future of non-invasive blood glucose detection technology to improve blood glucose monitoring in diabetic patients.
Collapse
Affiliation(s)
- Zhiqing Peng
- College of Mechanical and Electronic Engineering, Pingxiang University, Pingxiang 330073, P.R. China.
| | - Zhuanqing Yang
- Big Data and Internet of Things School, Chongqing Vocational Institute of Engineering, Chongqing 402260, China
| |
Collapse
|
6
|
Tabasz T, Szymańska N, Bąk-Drabik K, Damasiewicz-Bodzek A, Nowak A. Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1283. [PMID: 39202564 PMCID: PMC11356747 DOI: 10.3390/medicina60081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Background: Raman spectroscopy is a well-known tool used in criminology, molecular biology, and histology. It is also applied to diagnose bone mineral disorders by taking advantage of the similarity of the structure of keratin and bone collagen. Raman spectroscopy can also be used in dermatology and diabetology. The purpose of the present review is to critically evaluate the available research about the use of Raman spectroscopy in the mentioned areas of medicine. Methodology: PubMed was searched for peer-reviewed articles on the subject of use of Raman spectroscopy in bone mineral disorders, dermatology, and diabetes mellitus. Results: Nail keratin and bone collagen are related structural proteins that require disulfide bond for structural stability. Therefore, Raman spectroscopy of keratin may have potential as a diagnostic tool for screening bone quality and distinguishing patients at risk of fracture for reasons different from low bone mineral density (BMD) in the adult women population. Raman spectroscopy can also investigate the changes in keratin's structure in nails affected by onychomycosis and distinguish between healthy and onychomycosis nail samples. It could also reduce the need for nail biopsy by distinguishing between dermatophytic and non-dermatophytic agents of onychomycosis. Additionally, Raman spectroscopy could expedite the diagnostic process in psoriasis (by assessing the secondary structure of keratin) and in diabetes mellitus (by examining the protein glycation level). Conclusions: In adult populations, Raman spectroscopy is a promising and safe method for assessing the structure of fingernails. However, data are scarce in the pediatric population; therefore, more studies are required in children.
Collapse
Affiliation(s)
- Teresa Tabasz
- Faculty of Medical Sciences in Zabrze, Students Association, Medical University of Silesia, 41-808 Katowice, Poland; (T.T.); (N.S.)
| | - Natalia Szymańska
- Faculty of Medical Sciences in Zabrze, Students Association, Medical University of Silesia, 41-808 Katowice, Poland; (T.T.); (N.S.)
| | - Katarzyna Bąk-Drabik
- Department of Paediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Aleksandra Damasiewicz-Bodzek
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland; (A.D.-B.); (A.N.)
| | - Agnieszka Nowak
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland; (A.D.-B.); (A.N.)
| |
Collapse
|
7
|
Peng B, Wang Y, Xie Y, Dong X, Liu W, Li D, Chen H. An overview of influenza A virus detection methods: from state-of-the-art of laboratories to point-of-care strategies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4496-4515. [PMID: 38946516 DOI: 10.1039/d4ay00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Influenza A virus (IAV), a common respiratory infectious pathogen, poses a significant risk to personal health and public health safety due to rapid mutation and wide host range. To better prevent and treat IAV, comprehensive measures are needed for early and rapid screening and detection of IAV. Although traditional laboratory-based techniques are accurate, they are often time-consuming and not always feasible in emergency or resource-limited areas. In contrast, emerging point-of-care strategies provide faster results but may compromise sensitivity and specificity. Here, this review critically evaluates various detection methods for IAV from established laboratory-based procedures to innovative rapid diagnosis. By analyzing the recent research progress, we aim to address significant gaps in understanding the effectiveness, practicality, and applicability of these methods in different scenarios, which could provide information for healthcare strategies, guide public health response measures, and ultimately strengthen patient care in the face of the ongoing threat of IAV. Through a detailed comparison of diagnostic models, this review can provide a reliable reference for rapid, accurate and efficient detection of IAV, and to contribute to the diagnosis, treatment, prevention, and control of IAV.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yaqi Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Li M, Luo A, Xu W, Wang H, Qiu Y, Xiao Z, Cui K. A Visual Raman Nano-Delivery System Based on Thiophene Polymer for Microtumor Detection. Pharmaceutics 2024; 16:655. [PMID: 38794317 PMCID: PMC11125006 DOI: 10.3390/pharmaceutics16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A visual Raman nano-delivery system (NS) is a widely used technique for the visualization and diagnosis of tumors and various biological processes. Thiophene-based organic polymers exhibit excellent biocompatibility, making them promising candidates for development as a visual Raman NS. However, materials based on thiophene face limitations due to their absorption spectra not matching with NIR (near-infrared) excitation light, which makes it difficult to achieve enhanced Raman properties and also introduces potential fluorescence interference. In this study, we introduce a donor-acceptor (D-A)-structured thiophene-based polymer, PBDB-T. Due to the D-A molecular modulation, PBDB-T exhibits a narrow bandgap of Eg = 2.63 eV and a red-shifted absorption spectrum, with the absorption edge extending into the NIR region. Upon optimal excitation with 785 nm light, it achieves ultra-strong pre-resonant Raman enhancement while avoiding fluorescence interference. As an intrinsically sensitive visual Raman NS for in vivo imaging, the PBDB-T NS enables the diagnosis of microtumor regions with dimensions of 0.5 mm × 0.9 mm, and also successfully diagnoses deeper tumor tissues, with an in vivo circulation half-life of 14.5 h. This research unveils the potential application of PBDB-T as a NIR excited visual Raman NS for microtumor diagnosis, introducing a new platform for the advancement of "Visualized Drug Delivery Systems". Moreover, the aforementioned platform enables the development of a more diverse range of targeted visual drug delivery methods, which can be tailored to specific regions.
Collapse
Affiliation(s)
- Meng Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Wei Xu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Haoze Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Zeyu Xiao
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| |
Collapse
|
9
|
Awais M, Naqvi SMZA, Wei Z, Wu J, Arshad I, Raghavan V, Khan SU, Hu J. Functionalized Single Crystal Perovskite Materials for SERS and Their Potential Detection Applications. J Fluoresc 2024:10.1007/s10895-024-03716-7. [PMID: 38613710 DOI: 10.1007/s10895-024-03716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Recent advances in detection and diagnostic tools have improved understanding and identification of plant physiological and biochemical processes. Effective and safe Surface Enhanced Raman Spectroscopy (SERS) can find objects quickly and accurately. Raman enhancement amplifies the signal by 1014-1015 to accurately quantify plant metabolites at the molecular level. This paper shows how to use functionalized perovskite substrates for SERS. These perovskite substrates have lots of surface area, intense Raman scattering, and high sensitivity and specificity. These properties eliminate sample matrix component interference. This study identified research gaps on perovskite substrates' effectiveness, precision, and efficiency in biological metabolite detection compared to conventional substrates. This article details the synthesis and use of functionalized perovskites for plant metabolites measurement. It analyzes their pros and cons in this context. The manuscript analyzes perovskite-based SERS substrates, including single-crystalline perovskites with enhanced optoelectronic properties. This manuscript aims to identify this study gap by comprehensively reviewing the literature and using it to investigate plant metabolite detection in future studies.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| | - Zhang Wei
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Junfeng Wu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Ifzan Arshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Sami Ullah Khan
- Department of Mathematics, Namal University, Talagang Road, Mianwali, 42250, Pakistan
| | - Jiandong Hu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| |
Collapse
|
10
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
11
|
Allakhverdiev ES, Kossalbayev BD, Sadvakasova AK, Bauenova MO, Belkozhayev AM, Rodnenkov OV, Martynyuk TV, Maksimov GV, Allakhverdiev SI. Spectral insights: Navigating the frontiers of biomedical and microbiological exploration with Raman spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112870. [PMID: 38368635 DOI: 10.1016/j.jphotobiol.2024.112870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Raman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae. This article also explores the multifaceted role of RS in these domains, highlighting its distinct advantages, acknowledging its limitations, and proposing strategies for enhancement.
Collapse
Affiliation(s)
- Elvin S Allakhverdiev
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia.
| | - Bekzhan D Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308 Tianjin, China; Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan
| | - Asemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Ayaz M Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Oleg V Rodnenkov
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Tamila V Martynyuk
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Academician Chazov 15А St., Moscow 121552, Russia
| | - Georgy V Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Leninskie Gory 1/12, Moscow 119991, Russia
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR Russian Academy of Sciences, Pushchino 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
12
|
Noorizadeh M, Geetha M, Bensaali F, Meskin N, Sadasivuni KK, Zughaier SM, Elgamal M, Ait Hssain A. A Path towards Timely VAP Diagnosis: Proof-of-Concept Study on Pyocyanin Sensing with Cu-Mg Doped Graphene Oxide. BIOSENSORS 2024; 14:48. [PMID: 38248425 PMCID: PMC11154305 DOI: 10.3390/bios14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
In response to the urgent requirement for rapid, precise, and cost-effective detection in intensive care units (ICUs) for ventilated patients, as well as the need to overcome the limitations of traditional detection methods, researchers have turned their attention towards advancing novel technologies. Among these, biosensors have emerged as a reliable platform for achieving accurate and early diagnoses. In this study, we explore the possibility of using Pyocyanin analysis for early detection of pathogens in ventilator-associated pneumonia (VAP) and lower respiratory tract infections in ventilated patients. To achieve this, we developed an electrochemical sensor utilizing a graphene oxide-copper oxide-doped MgO (GO - Cu - Mgo) (GCM) catalyst for Pyocyanin detection. Pyocyanin is a virulence factor in the phenazine group that is produced by Pseudomonas aeruginosa strains, leading to infections such as pneumonia, urinary tract infections, and cystic fibrosis. We additionally investigated the use of DNA aptamers for detecting Pyocyanin as a biomarker of Pseudomonas aeruginosa, a common causative agent of VAP. The results of this study indicated that electrochemical detection of Pyocyanin using a GCM catalyst shows promising potential for various applications, including clinical diagnostics and drug discovery.
Collapse
Affiliation(s)
- Mohammad Noorizadeh
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Mithra Geetha
- Department of Mechanical and Industrial Engineering, Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.G.); (K.K.S.)
| | - Faycal Bensaali
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Nader Meskin
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar;
| | - Kishor K. Sadasivuni
- Department of Mechanical and Industrial Engineering, Centre for Advanced Materials, Qatar University, Doha 2713, Qatar; (M.G.); (K.K.S.)
| | - Susu M. Zughaier
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.M.Z.); (M.E.)
| | - Mahmoud Elgamal
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.M.Z.); (M.E.)
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha 3050, Qatar;
| |
Collapse
|
13
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
14
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
15
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
16
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Colniță A, Toma VA, Brezeștean IA, Tahir MA, Dina NE. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases. BIOSENSORS 2023; 13:bios13050499. [PMID: 37232860 DOI: 10.3390/bios13050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) applications in clinical diagnosis and spectral pathology are increasing due to the potential of the technique to bio-barcode incipient and differential diseases via real-time monitoring of biomarkers in fluids and in real-time via biomolecular fingerprinting. Additionally, the rapid advancements in micro/nanotechnology have a visible influence in all aspects of science and life. The miniaturization and enhanced properties of materials at the micro/nanoscale transcended the confines of the laboratory and are revolutionizing domains such as electronics, optics, medicine, and environmental science. The societal and technological impact of SERS biosensing by using semiconductor-based nanostructured smart substrates will be huge once minor technical pitfalls are solved. Herein, challenges in clinical routine testing are addressed in order to understand the context of how SERS can perform in real, in vivo sampling and bioassays for early neurodegenerative disease (ND) diagnosis. The main interest in translating SERS into clinical practice is reinforced by the practical advantages: portability of the designed setups, versatility in using nanomaterials of various matter and costs, readiness, and reliability. As we will present in this review, in the frame of technology readiness levels (TRL), the current maturity reached by semiconductor-based SERS biosensors, in particular that of zinc oxide (ZnO)-based hybrid SERS substrates, is situated at the development level TRL 6 (out of 9 levels). Three-dimensional, multilayered SERS substrates that provide additional plasmonic hot spots in the z-axis are of key importance in designing highly performant SERS biosensors for the detection of ND biomarkers.
Collapse
Affiliation(s)
- Alia Colniță
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
- Institute of Biological Research, Department of Biochemistry and Experimental Biology, 48 Republicii, Branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
| | - Ioana Andreea Brezeștean
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
19
|
Choi HK, Yoon J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. BIOSENSORS 2023; 13:208. [PMID: 36831973 PMCID: PMC9953881 DOI: 10.3390/bios13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
20
|
Terrones O, Olazar-Intxausti J, Anso I, Lorizate M, Nieto-Garai JA, Contreras FX. Raman Spectroscopy as a Tool to Study the Pathophysiology of Brain Diseases. Int J Mol Sci 2023; 24:2384. [PMID: 36768712 PMCID: PMC9917237 DOI: 10.3390/ijms24032384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The Raman phenomenon is based on the spontaneous inelastic scattering of light, which depends on the molecular characteristics of the dispersant. Therefore, Raman spectroscopy and imaging allow us to obtain direct information, in a label-free manner, from the chemical composition of the sample. Since it is well established that the development of many brain diseases is associated with biochemical alterations of the affected tissue, Raman spectroscopy and imaging have emerged as promising tools for the diagnosis of ailments. A combination of Raman spectroscopy and/or imaging with tagged molecules could also help in drug delivery and tracing for treatment of brain diseases. In this review, we first describe the basics of the Raman phenomenon and spectroscopy. Then, we delve into the Raman spectroscopy and imaging modes and the Raman-compatible tags. Finally, we center on the application of Raman in the study, diagnosis, and treatment of brain diseases, by focusing on traumatic brain injury and ischemia, neurodegenerative disorders, and brain cancer.
Collapse
Affiliation(s)
- Oihana Terrones
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - June Olazar-Intxausti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Itxaso Anso
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation of Science, 48011 Bilbao, Spain
| |
Collapse
|
21
|
Liang H, Shi R, Wang H, Zhou Y. Advances in the application of Raman spectroscopy in haematological tumours. Front Bioeng Biotechnol 2023; 10:1103785. [PMID: 36704299 PMCID: PMC9871369 DOI: 10.3389/fbioe.2022.1103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Hematologic malignancies are a diverse collection of cancers that affect the blood, bone marrow, and organs. They have a very unpredictable prognosis and recur after treatment. Leukemia, lymphoma, and myeloma are the most prevalent symptoms. Despite advancements in chemotherapy and supportive care, the incidence rate and mortality of patients with hematological malignancies remain high. Additionally, there are issues with the clinical diagnosis because several hematological malignancies lack defined, systematic diagnostic criteria. This work provided an overview of the fundamentals, benefits, and limitations of Raman spectroscopy and its use in hematological cancers. The alterations of trace substances can be recognized using Raman spectroscopy. High sensitivity, non-destructive, quick, real-time, and other attributes define it. Clinicians must promptly identify disorders and keep track of analytes in biological fluids. For instance, surface-enhanced Raman spectroscopy is employed in diagnosing gene mutations in myelodysplastic syndromes due to its high sensitivity and multiple detection benefits. Serum indicators for multiple myeloma have been routinely used for detection. The simultaneous observation of DNA strand modifications and the production of new molecular bonds by tip-enhanced Raman spectroscopy is of tremendous significance for diagnosing lymphoma and multiple myeloma with unidentified diagnostic criteria.
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruxue Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China,*Correspondence: Yuan Zhou,
| |
Collapse
|
22
|
Panferov VG, Ivanov NA, Mazzulli T, Brinc D, Kulasingam V, Krylov SN. Electrophoresis-Assisted Multilayer Assembly of Nanoparticles for Sensitive Lateral Flow Immunoassay. Angew Chem Int Ed Engl 2023; 62:e202215548. [PMID: 36357330 DOI: 10.1002/anie.202215548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/12/2022]
Abstract
Lateral flow immunoassay (LFIA) is a rapid, simple, and inexpensive point-of-need method. A major limitation of LFIA is a high limit of detection (LOD), which impacts its diagnostic sensitivity. To overcome this limitation, we introduce a signal-enhancement procedure that is performed after completing LFIA and involves controllably moving biotin- and streptavidin-functionalized gold nanoparticles by electrophoresis. The nanoparticles link to immunocomplexes forming multilayer aggregates on the test strip, thus, enhancing the signal. Here, we demonstrate lowering the LOD of hepatitis B surface antigen from approximately 8 to 0.12 ng mL-1 , making it clinically acceptable. Testing 118 clinical samples for hepatitis B showed that signal enhancement increased the diagnostic sensitivity of LFIA from 73 % to 98 % while not affecting its 95 % specificity. Electrophoresis-driven enhancement of LFIA is universal (antigen-independent), takes two minutes, and can be performed by an untrained person.
Collapse
Affiliation(s)
- Vasily G Panferov
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" Russian Academy of Sciences, 33 Leninsky Prospect, Moscow, 119071, Russia
| | - Nikita A Ivanov
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Tony Mazzulli
- Sinai Health, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Davor Brinc
- Toronto General Hospital: University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada
| | - Vathany Kulasingam
- Toronto General Hospital: University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.,Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
23
|
Janik-Olchawa N, Drozdz A, Wajda A, Sitarz M, Planeta K, Setkowicz Z, Ryszawy D, Kmita A, Chwiej J. Biochemical changes of macrophages and U87MG cells occurring as a result of the exposure to iron oxide nanoparticles detected with the Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121337. [PMID: 35537264 DOI: 10.1016/j.saa.2022.121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 μg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm-1, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Natalia Janik-Olchawa
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Agnieszka Drozdz
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Karolina Planeta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Damian Ryszawy
- Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
24
|
Nihal S, Guppy-Coles K, Gholami MD, Punyadeera C, Izake EL. Towards Label-free detection of viral disease agents through their cell surface proteins: Rapid screening SARS-CoV-2 in biological specimens. SLAS DISCOVERY 2022; 27:331-336. [PMID: 35667647 PMCID: PMC9166287 DOI: 10.1016/j.slasd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.
Collapse
|