1
|
Merdalimova A, Barmin R, Vorobev V, Aleksandrov A, Terentyeva D, Estifeeva T, Chernyshev V, German S, Maslov O, Skibina Y, Rudakovskaya P, Gorin D. Two-in-one sensor of refractive index and Raman scattering using hollow-core microstructured optical waveguides for colloid characterization. Colloids Surf B Biointerfaces 2024; 234:113705. [PMID: 38194837 DOI: 10.1016/j.colsurfb.2023.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection. The performance of the sensor was evaluated by characterizing protein-copolymer multicomponent colloids, specifically, bovine serum albumin (BSA) and poly(N - vinyl-2 -pyrrolidone-co-acrylic acid) P(VP-AA) nano-sized complexes and microbubbles of the corresponding shell. Monocomponent solutions showed linear dependencies of RI and characteristic Raman peak intensities on mass concentration. Multicomponent Raman sensing of BSA@P(VP-AA) complexes and microbubbles revealed that changes in P(VP-AA) characteristic peak intensities can describe interactions between components needed to produce colloid systems. RI sensing of multicomponent colloids demonstrated linear dependence on total mass concentrations for BSA@P(VP-AA) complexes, while corresponding BSA@P(VP-AA) microbubbles can be detected with concentrations as high as 4.0 × 108 MB/mL. Therefore, the developed two-in-one sensor of RI and Raman scattering can be used the robust characterization of albumin-based colloids designed for therapeutic and diagnostic needs.
Collapse
Affiliation(s)
- Anastasiia Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia.
| | - Roman Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Viktor Vorobev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Artem Aleksandrov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Faculty of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia; National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow 117997, Russia
| | - Daria Terentyeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tatiana Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Vasiliy Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow 117997, Russia
| | - Sergey German
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Oleg Maslov
- Department of Nanomaterials and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Yulia Skibina
- SPE LLC Nanostructured Glass Technology, Saratov 410033, Russia
| | - Polina Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|