1
|
Qin Y, Zhong X, Liang C, Liang Z, Nong Y, Deng L, Guo Y, Li J, Zhang M, Tang S, Wei L, Yang Y, Liang Y, Wu J, Lam YM, Su Z. Nanozyme-based colorimetric sensor arrays coupling with smartphone for discrimination and "segmentation-extraction-regression" deep learning assisted quantification of flavonoids. Biosens Bioelectron 2024; 263:116604. [PMID: 39094293 DOI: 10.1016/j.bios.2024.116604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.
Collapse
Affiliation(s)
- Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinfeng Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Meiling Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Siqi Tang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Liuyan Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore; Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798, Singapore.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, 530021, China.
| |
Collapse
|
2
|
Feng L, Zhang M, Fan Z. Current trends in colorimetric biosensors using nanozymes for detecting biotoxins (bacterial food toxins, mycotoxins, and marine toxins). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6771-6792. [PMID: 39319401 DOI: 10.1039/d4ay01184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Biotoxins, predominantly bacterial food toxins, mycotoxins, and marine toxins, have emerged as major threats in the fields of seafood, other foods, feeds, and medicine. They have potential teratogenic, mutagenic, and carcinogenic effects on humans, occasionally triggering high morbidity and mortality. One of the apparent concerns relates to the increasing consumption of fast food resulting in the demand for processed food without adequate consideration of the toxins they may contain. Therefore, developing improved methods for detecting biotoxins is of paramount significance. Nanozymes, a type of nanomaterials exhibiting enzyme-like activity, are increasingly being recognized as viable alternatives to natural enzymes owing to their benefits, such as customizable design, controlled catalytic performance, excellent biocompatibility, and superior stability. The remarkable catalytic activity of nanozymes has led to their broad utilization in the development of colorimetric biosensors. This has emerged as a potent and efficient approach for rapid detection, enabling the creation of innovative colorimetric sensing methodologies through the integration of nanozymes with colorimetric sensors. In this review, recent development in nanozyme research and their application in colorimetric biosensing of biotoxins are examined with an emphasis on their characteristics and performance. The study particularly focuses on the peroxidase (POD) activity, oxidase (OXD) activity, superoxide dismutase (SOD), and catalase (CAT) activity of nanozymes in colorimetric biosensors. Ultimately, the challenges and future prospects of these assays are explored.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Mingcheng Zhang
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| | - Zhiyi Fan
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
3
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
4
|
Wu S, Xia J, Li R, Cao H, Ye D. Perspectives for the Role of Single-Atom Nanozymes in Assisting Food Safety Inspection and Food Nutrition Evaluation. Anal Chem 2024; 96:1813-1824. [PMID: 38271678 DOI: 10.1021/acs.analchem.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single-atom nanozymes (SAzymes) have been greatly developed for rapid detection, owing to their rich active sites and excellent catalytic activity. Although several excellent reviews concentrating on SAzymes have been reported, they mainly focused on advanced synthesis, sensing mechanisms, and biomedical applications. To date, few reviews elaborate on the promising applications of SAzymes in food safety inspection and food nutrition evaluation. In this paper, we systematically reviewed the enzyme-like activity of SAzymes and the catalytic mechanism, in addition to recent research advances of SAzymes in the domain of food safety inspection and food nutrition evaluation in the past few years. Furthermore, current challenges hampering practical applications of SAzymes in food assay are summarized and analyzed, and possible research areas focusing on SAzyme-based sensors in rapid food testing are also proposed.
Collapse
Affiliation(s)
- Shuo Wu
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
| | - Jianing Xia
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Rui Li
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570100, PR China
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, PR China
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
5
|
Zhang Y, Yu W, Wang M, Zhang L, Li P. Nanozyme-assisted amplification-free CRISPR/Cas system realizes visual detection. Front Bioeng Biotechnol 2024; 11:1327498. [PMID: 38249803 PMCID: PMC10796770 DOI: 10.3389/fbioe.2023.1327498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated) system has proven to be a powerful tool for nucleic acid detection due to its inherent advantages of effective nucleic acid identification and editing capabilities, and is therefore known as the next-generation of molecular diagnostic technology. However, the detection technologies based on CRISPR/Cas systems require preamplification of target analytes; that is, target gene amplification steps through isothermal amplification or PCR before detection to increase target analyte concentrations. This creates a number of testing limitations, such as extended testing time and the need for more sophisticated testing instruments. To overcome the above limitations, various amplification-free assay strategies based on CRISPR/Cas systems have been explored as alternatives, which omit the preamplification step to increase the concentrations of the target analytes. Nanozymes play a pivotal role in enhancing the sensitivity of CRISPR-based detection, enabling visual and rapid CRISPR assays. The utilization of nanozyme exceptional enzyme-like catalytic activity holds great promise for signal amplification in both electrochemical and optical domains, encompassing strategies for electrochemical signal sensors and colorimetric signal sensors. Rather than relying on converting a single detection target analyte into multiple analytes, these methods focus on signal amplification, the main mechanism of which involves the ability to form a large number of reporter molecules or to improve the performance of the sensor. This exploitation of nanozymes for signal amplification results in the heightened sensitivity and accuracy of detection outcomes. In addition to the strategies that improve sensor performance through the application of nanozymes, additional methods are needed to achieve visual signal amplification strategies without preamplification processes. Herein, we review the strategies for improving CRISPR/Cas systems that do not require preamplification, providing a simple, intuitive and preamplification-free CRISPR/Cas system detection platform by improving in-system one-step amplification programs, or enhancing nanozyme-mediated signal amplification strategies.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Zhu H, Liu B, Liu J, Pan J, Hu P, Xu L, Niu X. MnO x In Situ Growth-Induced Luminescence and Oxidase-Like Feature Bimodulation of CePO 4:Tb Nanorods: Toward Ascorbic Acid-Related Bioanalysis in a "One-Stone-Two-Birds" Manner. Inorg Chem 2023; 62:15215-15225. [PMID: 37656616 DOI: 10.1021/acs.inorgchem.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Nanozyme-based multimode detection is a useful means to improve the accuracy and stability of analytical methods. However, both multifunctional nanozymes and related multimodal sensing strategies are still very scarce. Besides, they require complex processes to fabricate and operate. To fill this gap, here we propose a spontaneous interfacial in situ growth strategy to prepare a new bifunctional material (CePO4:Tb@MnOx) featuring good oxidase-like activity and green photoluminescence for the dual-mode colorimetric/luminescence determination of ascorbic acid (AA)-related biomarkers specifically. CePO4:Tb@MnOx was gained through the controllable redox reaction between KMnO4 and CePO4:Tb nanorods. It was interestingly found that MnOx in situ growth not only significantly enhanced the enzyme-like activity but also could reversibly regulate the luminescence of CePO4:Tb via a dual quenching mechanism. More interestingly, CePO4:Tb@MnOx exhibited a distinctive response toward AA against other reducing species. A double-coordination regulation mechanism was further verified to clarify the catalytic activity and luminescence switching behaviors in CePO4:Tb@MnOx. Based on these findings, a dual-mode colorimetric/luminescence approach was established for AA sensing in a "one-stone-two-birds" manner, providing excellent selectivity, sensitivity, and practicability. Furthermore, the determination of AA-related biomarkers, including acid phosphatase activity and organophosphorus residue, was also validated by the sensing principle. Our work not only deepens the understanding of the coordinated regulation of the luminescence and enzyme-like features in lanthanide-based materials but also offers a novel way to design and develop multifunctional nanozymes for advanced bioanalytical applications.
Collapse
Affiliation(s)
- Hengjia Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lizhang Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiangheng Niu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| |
Collapse
|
7
|
Zhang Y, Yu W, Chen M, Zhang B, Zhang L, Li P. The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. NANOSCALE 2023. [PMID: 37377098 DOI: 10.1039/d3nr01722b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozymes are nanomaterials with catalytic properties similar to those of natural enzymes, and they have recently been collectively identified as a class of innovative artificial enzymes. Nanozymes are widely used in various fields, such as biomedicine, due to their high catalytic activity and stability. Nanozymes can trigger changes in reactive oxygen species (ROS) levels in cells and the activation of inflammasomes, leading to the programmed cell death (PCD), including the pyroptosis, ferroptosis, and autophagy, of tumor cells. In addition, some nanozymes consume glucose, starving cancer cells and thus accelerating tumor cell death. In addition, the electric charge of the structure and the catalytic activity of nanozymes are sensitive to external factors such as light and electric and magnetic fields. Therefore, nanozymes can be used with different therapeutic methods, such as chemodynamic therapy (CDT), photodynamic therapy (PDT) and sonodynamic therapy (SDT), to achieve highly efficient antitumor effects. Many cancer therapies induce tumor cell death via the pyroptosis, ferroptosis, and autophagy of tumor cells mediated by nanozymes. We review the mechanisms of pyroptosis, ferroptosis, and autophagy in tumor development, as well as the potential application of nanozymes to regulate pyroptosis, ferroptosis, and autophagy in tumor cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Wanpeng Yu
- Medical Collage, Qingdao University, Qingdao, China
| | - Mengmeng Chen
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Bingqiang Zhang
- Qingdao Re-store Life Science Co., Ltd, Qingdao, Shandong, China
| | - Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
8
|
Li F, Hu C, Su W, Liang H, Xiao F, Liu J, Tan Y, Yang S. A self-cascade system based on Ag nanoparticle/single-walled carbon nanotube nanocomposites as an enzyme mimic for ultrasensitive detection of L-cysteine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366585 DOI: 10.1039/d3ay00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
L-Cysteine, widely used in medicine and the food industry, is of great essentiality to organisms and the food quality. Given that current detection approaches require exacting lab conditions and tedious sample treatment, there is a pressing demand for developing a method that possesses advantages of user friendliness, prominent performance, and cost-effectiveness. Herein, a self-cascade system was developed for the fluorescence detection of L-cysteine based on the ingenious performance of Ag nanoparticle/single-walled carbon nanotube nanocomposites (AgNP/SWCNTs) and DNA-templated Ag nanoclusters (DNA-AgNCs). The fluorescence of DNA-AgNCs could be quenched on account of the adsorption of DNA-AgNCs on AgNP/SWCNTs by π-π stacking. With the cooperation of Fe2+, AgNP/SWCNTs with oxidase and peroxidase-like activities could catalyze the oxidation of L-cysteine to produce cystine and hydrogen peroxide (H2O2) and then break the O-O bond of H2O2 to generate a hydroxyl radical (·OH), which could cleave the DNA strand into different sequence fragments which subsequently peeled off from the AgNP/SWCNTs, resulting in a "turn-on" fluorescence response. In this paper, AgNP/SWCNTs with multi-enzyme activities was synthesized enabling the reaction to proceed in just one step. The successful preliminary applications for the L-cysteine detection in pharmaceutical, juice beverage, and serum samples indicated that the developed method exhibited great potential in medical diagnosis, food monitoring, and the biochemical field, which also broadened the horizon for follow-up research.
Collapse
Affiliation(s)
- Feifei Li
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congcong Hu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wenen Su
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fubing Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jinquan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yan Tan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shengyuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
Liu B, Zhu H, Liu J, Wang M, Pan J, Feng R, Hu P, Niu X. Alkali-Etched Imprinted Mn-Based Prussian Blue Analogues with Superior Oxidase-Mimetic Activity and Precise Recognition for Tetracycline Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24736-24746. [PMID: 37163688 DOI: 10.1021/acsami.3c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a typical antibiotic pollutant, tetracycline (TC) is producing increasing threats to the ecosystem and human health, and exploring convenient means for monitoring of TC is needed. Here, we proposed alkali-etched imprinted Mn-based Prussian blue analogues featuring superior oxidase-mimetic activity and precise recognition for the colorimetric sensing of TC. Simply etching Mn-based Prussian blue analogues (Mn-PBAs) with NaOH could expose the sites and surfaces to significantly improve their catalytic activity. Density functional theory calculations were employed to screen the molecularly imprinted polymer (MIP) layer for target identification. Consequently, the designed Mn-PBANaOH@MIP possessed the rich channels for substrates to get in touch with the active Mn-PBANaOH core, showing an excellent catalytic capacity to trigger the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the use of H2O2. If TC was introduced, it would be recognized selectively by the MIP shell and masked the channels for TMB access, resulting in the obstruction of the chromogenic reaction. According to this mechanism, selective optical detection of TC was achieved, and performance stability, reusability, and reliability as well as practicability were also verified, promising potential for TC monitoring in complex matrices. Our work not only presents an effective way to enhance the enzyme-like activity of Prussian blue analogues but also provides a facile approach for TC sensing. Additionally, the work will inspire the exploration of molecularly imprinted nanozymes for various applications.
Collapse
Affiliation(s)
- Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rulin Feng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
10
|
Adam H, Gopinath SCB, Md Arshad MK, Adam T, Parmin NA, Husein I, Hashim U. An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech 2023; 13:142. [PMID: 37124989 PMCID: PMC10134733 DOI: 10.1007/s13205-023-03553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of dopaminergic and non-dopaminergic neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease. Furthermore, due to the difficulty of clinical diagnosis of Parkinson's disease, it is often misdiagnosed, highlighting the need for better methods of detection. Treatment of Parkinson's disease is also complicated due to the difficulties of medications passing across the blood-brain barrier. Moreover, the conventional methods fail to solve the aforementioned issues. As a result, new methods are needed to detect and treat Parkinson's disease. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms. This review explores how nanotechnology platforms, such as nanobiosensors and nanomedicine, have improved Parkinson's disease detection and treatment. Nanobiosensors integrate science and engineering principles to detect Parkinson's disease. The main advantages are their low cost, portability, and quick and precise analysis. Moreover, nanotechnology can transport medications in the form of nanoparticles across the blood-brain barrier. However, because nanobiosensors are a novel technology, their use in biological systems is limited. Nanobiosensors have the potential to disrupt cell metabolism and homeostasis, changing cellular molecular profiles and making it difficult to distinguish sensor-induced artifacts from fundamental biological phenomena. In the treatment of Parkinson's disease, nanoparticles, on the other hand, produce neurotoxicity, which is a challenge in the treatment of Parkinson's disease. Techniques must be developed to distinguish sensor-induced artifacts from fundamental biological phenomena and to reduce the neurotoxicity caused by nanoparticles.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - M. K. Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis, Malaysia
| | - N. A. Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| | - Irzaman Husein
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor-Indonesia, Indonesia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
11
|
Das AK, Kalita JJ, Borah M, Das S, Sharma M, Saharia D, Sarma KK, Bora S, Bora U. Papaya latex mediated synthesis of prism shaped proteolytic gold nanozymes. Sci Rep 2023; 13:5965. [PMID: 37045854 PMCID: PMC10097869 DOI: 10.1038/s41598-023-32409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Beyond natural enzymes, the artificially synthesized nanozymes have attracted a significant interest as it can overcome the limitations of the former. Here, we report synthesis of shape controlled nanozymes showing proteolytic activity using Carica papaya L. (papaya) latex. The nanozymes synthesized under optimized reaction conditions exhibited sharp SPR peak around 550 nm with high abundance (45.85%) of prism shaped particles. FTIR analysis and coagulation test indicated the presence of papaya latex enzymes as capping agents over the gold nanoprisms. The milk clot assay and the inhibition test with egg white confirmed the proteolytic activity of the nanozymes and the presence of cysteine protease on it, respectively. The nanozymes were found to be biocompatible and did not elicit any toxic response in both in-vitro and in-vivo study. Based on our findings, we envisage that these biocompatible, shape-specific nanozymes can have potential theragnostic applications.
Collapse
Affiliation(s)
- Ajoy Kumar Das
- Department of Botany, Arya Vidyapeeth College, Gopinath Nagar, Guwahati, Assam, 781016, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India.
| | - Jon Jyoti Kalita
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Maina Borah
- Department of Botany, Pandu College, Pandu, Guwahati, Assam, 781012, India
| | - Suradip Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Manav Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Dhiren Saharia
- Saharia's Path Lab and Blood Bank, Guwahati, Assam, 781 005, India
| | - Kushal Konwar Sarma
- Department of Surgery and Radiology, College of Veterinary Sciences, Assam Agriculture University Campus, Khanapara, Guwahati, Assam, 781 022, India
| | - Samrat Bora
- Department of Botany, Arya Vidyapeeth College, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Utpal Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
12
|
Razavi M, Barras A, Szunerits S, Khoshkam M, Kompany-Zareh M, Boukherroub R. A colorimetric assay and MCR-ALS analysis of the peroxidase-like activity of poly (N-phenylglycine) functionalized with polyethylene glycol (PNPG-PEG) nanozyme for the determination of dopamine. Anal Chim Acta 2022; 1235:340493. [DOI: 10.1016/j.aca.2022.340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
13
|
Ouyang Y, O'Hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosens Bioelectron 2022; 218:114768. [DOI: 10.1016/j.bios.2022.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
14
|
González-González RB, Flores-Contreras EA, González-González E, Torres Castillo NE, Parra-Saldívar R, Iqbal HMN. Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|