1
|
Wang GH, Tang CH, Cheng CY, Chung YC. Improving the practicality of recombinant Escherichia coli biosensor in detecting trace Cr(VI) by modifying the cryogenic storage conditions of biosensors and applying simple pretreatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1028-1038. [PMID: 38189371 DOI: 10.1080/10934529.2024.2301905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a global environmental pollutant. To reduce the risk caused by Cr(VI), a simple, accurate, reproducible, and inexpensive method for quantifying Cr(VI) in water and soil should be developed. In this study, three types of recombinant Escherichia coli biosensors (namely T7-lux-E. coli, T3-lux-E. coli, and SP6-lux-E. coli biosensor) containing promoters (T7, T3, and SP6), chromate-sensing regulator chrB, and the reporter gene luxAB were constructed. This study investigated the effects of cryogenic freezing temperature and time on trace Cr(VI) measurement by using recombinant E. coli biosensors. The results indicated that the activity of thawed frozen SP6-lux-E. coli cells stored at -20 °C for 270 days did not differ from that of freshly prepared cells. Turbidity and conductivity in water samples and organic matter in soil interfered with Cr(VI) measurement using the biosensor. The SP6-lux-E. coli biosensor exhibited a wide measurement range and a low deviation of <5% for measuring Cr(VI) in various Cr(VI)-contaminated water and soil samples and required only a simple pretreatment or extraction process even after 270-day storage at -20 °C. To the best of our knowledge, this is the first study to report the use of recombinant biosensors for accurately measuring Cr(VI) in both water and soil.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, China
| | - Chi-Hsiang Tang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
2
|
Dai P, Huang X, Cui Y, Zhu L. Quantitative SERS Detection of TBBPA in Electronic Plastic Based on Hydrophobic Cu-Ag Chips. BIOSENSORS 2022; 12:881. [PMID: 36291018 PMCID: PMC9599951 DOI: 10.3390/bios12100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Tetrabromobisphenol A (TBBPA) was one of the most widely used brominated flame retardants. However, it easily contaminates nature and harms the environment and human health during its production and use. Therefore, it is necessary to strictly control the content of TBBPA in electronics. Surface-enhanced Raman spectroscopy has the advantages of being fast and sensitive, but it is difficult to obtain the SERS spectra of TBBPA because the hydrophobic TBBPA molecule is difficult to approach with the hydrophilic surface of common noble metal SERS substrates. In the present work, a hydrophobic Cu-Ag chip was developed for the SERS detection of TBBPA. The integration of the hydrophobic interaction and the Ag-Br bonding promoted the adsorption of TBBPA on the Cu-Ag chip, allowing for SERS detection. It was observed that both the hydrophobicity and bimetallic composition of the Cu-Ag chip played important roles in the SERS detection of TBBPA. Under the optimized conditions, the low limit of detection of the established SERS method for TBBPA was 0.01 mg L-1, within a linear range of 0.1-10 mg L-1. Combined with ultrasonic-assisted extraction, the substrate could be used for the quantitative determination of TBBPA in electronic products. Compared with the HPLC-UV method used as a national standard, the relative error of the SERS method for quantifying the TBBPA content in a mouse cable and shell was ±3% and ±7.7%, respectively. According to the SERS results, the recovery of TBBPA in the spiked mouse shell was 95.6%.
Collapse
Affiliation(s)
- Pei Dai
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Yellow Crane Tower Science and Technology Park (Group) Co., Ltd., Wuhan 430074, China
| | - Xianzhi Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaqian Cui
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Wu HY, Lin HC, Liu YH, Chen KL, Wang YH, Sun YS, Hsu JC. Highly Sensitive, Robust, and Recyclable TiO 2/AgNP Substrate for SERS Detection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196755. [PMID: 36235289 PMCID: PMC9571145 DOI: 10.3390/molecules27196755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Label-free biosensors provide an important platform for detecting chemical and biological substances without needing extra labeling agents. Unlike surface-based techniques such as surface plasmon resonance (SPR), interference, and ellipsometry, surface-enhanced Raman spectroscopy (SERS) possesses the advantage of monitoring analytes both on surfaces and in solutions. Increasing the SERS enhancement is crucial to preparing high-quality substrates without quickly losing their stability, sensitivity, and repeatability. However, fabrication methods based on wet chemistry, nanoimprint lithography, spark discharge, and laser ablation have drawbacks of waste of time, complicated processes, or nonreproducibility in surface topography. This study reports the preparation of recyclable TiO2/Ag nanoparticle (AgNP) substrates by using simple arc ion plating and direct-current (dc) magnetron sputtering technologies. The deposited anatase-phased TiO2 ensured the photocatalytic degradation of analytes. By measuring the Raman spectra of rhodamine 6G (R6G) in titrated concentrations, a limit of detection (LOD) of 10−8 M and a SERS enhancement factor (EF) of 1.01 × 109 were attained. Self-cleaning was performed via UV irradiation, and recyclability was achieved after at least five cycles of detection and degradation. The proposed TiO2/AgNP substrates have the potential to serve as eco-friendly SERS enhancers for label-free detection of various chemical and biological substances.
Collapse
Affiliation(s)
- Hsing-Yu Wu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Center for Astronomical Physics and Engineering, Department of Optics and Photonics, National Central University, Taoyuan City 320317, Taiwan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Chun Lin
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Hsien Liu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan City 335009, Taiwan
| | - Kai-Lin Chen
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
| | - Yu-Hsun Wang
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| | - Jin-Cherng Hsu
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| |
Collapse
|