1
|
Al Faysal A, Cetinkaya A, Erdoğan T, Ozkan SA, Gölcü A. Comparative study of two MIP-based electrochemical sensors for selective detection and quantification of the antiretroviral drug lopinavir in human serum. Talanta 2025; 281:126791. [PMID: 39232252 DOI: 10.1016/j.talanta.2024.126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/09/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Thermal polymerization (TP) and electropolymerization (EP) are the two methods used in this study to explore the molecular imprinting process. To detect the antiviral medication lopinavir (LPV), an inhibitor of enzyme HIV-1 protease that is co-formulated with ritonavir (RTV) to extend its half-life in the body, with greater precision, these methods were merged with an electrochemical sensor. The sensors were created on glassy carbon electrodes (GCE) based on molecularly imprinted polymers (MIP) using TP with methacrylic acid (MAA) functional monomer and EP with p-aminobenzoic acid (PABA) functional monomer. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electrochemical methods were utilized to examine the technical features of the suggested sensors. For both approaches, the necessary optimization investigations were carried out. Different LPV concentrations, ranging from 1.0 pM to 17.5 pM in drug solution and commercial human serum samples, were used to validate the analytical efficiency of the two sensors and compare their electroanalytical behaviour. For TP-LPV@MIP/GCE and EP-LPV@MIP/GCE, the corresponding limit of detection (LOD) was 2.68 × 10-13 M (0.169 pg mL-1) and 1.79 × 10-13 M (0.113 pg mL-1) in standard solutions, and 2.87 × 10-13 M (0.180 pg mL-1) and 2.91 × 10-13 M (0.183 pg mL-1) in serum samples. For the measurement of LPV in tablet form and serum samples, the proposed TP-LPV@MIP/GCE and EP-LPV@MIP/GCE sensors provide good recovery, demonstrating 99.85-101.16 % and 100.36-100.97 % recovery, respectively. The imprinting factor was utilized to demonstrate the selectivity of the suggested sensors by utilizing several anti-viral drugs that are structurally comparable to LPV. Additionally, the constructed sensors were examined for the potential impacts of interferences and the stability during the storage.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Turkiye
| | - Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Turkiye
| | - Taner Erdoğan
- Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli, 41140, Turkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Turkiye.
| | - Ayşegül Gölcü
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Turkiye.
| |
Collapse
|
2
|
Li W, Chen J, Chen X, Linli F, Yang X, Wang L, Zhang K. Universal organophosphate pesticides detection by peptide based fluorescent probes. Talanta 2024; 275:126065. [PMID: 38663061 DOI: 10.1016/j.talanta.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
In practical applications, the rapid and efficient detection of universal organophosphorus pesticides (OPs) can assist inspectors in quickly identifying the presence of OPs in samples. However, this presents a challenge for most well-established methods, typically designed to detect only a specific type of organophosphorus molecule at a time. In this proof-of-concept study, we draw inspiration from the structural similarities among OPs to develop innovative peptide-based fluorescence probes for the first time, which could efficiently detect a broad range of OPs within a mere 3 min. Analysis of fluorescence curve fitting reveals a clear linear correlation between the fluorescent intensity of the peptide probes and the concentration of OPs. Additionally, the selectivity analysis indicates that these peptide fluorescent probes exhibit an excellent response to various OPs while maintaining sufficient selectivity for detecting other pesticide types. Accurate sample analysis has also highlighted the potential of these peptide probes as practical tools for the rapid detection of OPs in actual vegetable samples. In summary, this proof-of-concept study presents an innovative approach to designing and developing ultrafast, universally peptide-based OP probes. These custom-designed peptide probes may facilitate rapid sample screening and offer initial quantification for OPs, potentially saving valuable time and effort in practical OP detection.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Junlong Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xianggui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xiao Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Lijun Wang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Kaihui Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, 611130, China
| |
Collapse
|
3
|
XIE B, LYU Y, LIU Z. [Recent advances of molecular imprinting technology for the separation and recognition of complex biological sample systems]. Se Pu 2024; 42:508-523. [PMID: 38845512 PMCID: PMC11165394 DOI: 10.3724/sp.j.1123.2024.01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 06/12/2024] Open
Abstract
Given continuous improvements in industrial production and living standards, the analysis and detection of complex biological sample systems has become increasingly important. Common complex biological samples include blood, serum, saliva, and urine. At present, the main methods used to separate and recognize target analytes in complex biological systems are electrophoresis, spectroscopy, and chromatography. However, because biological samples consist of complex components, they suffer from the matrix effect, which seriously affects the accuracy, sensitivity, and reliability of the selected separation analysis technique. In addition to the matrix effect, the detection of trace components is challenging because the content of the analyte in the sample is usually very low. Moreover, reasonable strategies for sample enrichment and signal amplification for easy analysis are lacking. In response to the various issues described above, researchers have focused their attention on immuno-affinity technology with the aim of achieving efficient sample separation based on the specific recognition effect between antigens and antibodies. Following a long period of development, this technology is now widely used in fields such as disease diagnosis, bioimaging, food testing, and recombinant protein purification. Common immuno-affinity technologies include solid-phase extraction (SPE) magnetic beads, affinity chromatography columns, and enzyme linked immunosorbent assay (ELISA) kits. Immuno-affinity techniques can successfully reduce or eliminate the matrix effect; however, their applications are limited by a number of disadvantages, such as high costs, tedious fabrication procedures, harsh operating conditions, and ligand leakage. Thus, developing an effective and reliable method that can address the matrix effect remains a challenging endeavor. Similar to the interactions between antigens and antibodies as well as enzymes and substrates, biomimetic molecularly imprinted polymers (MIPs) exhibit high specificity and affinity. Furthermore, compared with many other biomacromolecules such as antigens and aptamers, MIPs demonstrate higher stability, lower cost, and easier fabrication strategies, all of which are advantageous to their application. Therefore, molecular imprinting technology (MIT) is frequently used in SPE, chromatographic separation, and many other fields. With the development of MIT, researchers have engineered different types of imprinting strategies that can specifically extract the target analyte in complex biological samples while simultaneously avoiding the matrix effect. Some traditional separation technologies based on MIP technology have also been studied in depth; the most common of these technologies include stationary phases used for chromatography and adsorbents for SPE. Analytical methods that combine MIT with highly sensitive detection technologies have received wide interest in fields such as disease diagnosis and bioimaging. In this review, we highlight the new MIP strategies developed in recent years, and describe the applications of MIT-based separation analysis methods in fields including chromatographic separation, SPE, diagnosis, bioimaging, and proteomics. The drawbacks of these techniques as well as their future development prospects are also discussed.
Collapse
|
4
|
Yang D, Li X, Li X, Chen J, Zhang T, Lian T, Wang H. Design and synthesis of nano-iron oxyhydroxide-based molecularly imprinted electrochemical sensors for trace-level carbendazim detection in actual samples. Mikrochim Acta 2024; 191:163. [PMID: 38413431 DOI: 10.1007/s00604-024-06236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Carbendazim (CBD) is widely used as a fungicide that acts as a pesticide in farming to prevent crop diseases. However, CBD can remain on crops for a long time. When consumed by humans and animals, it produces a range of toxic symptoms and poses a serious threat to their health. Therefore, the detection of CBD is necessary. Traditional assay strategies for CBD detection, although sensitive and practical, can hardly achieve fast, robust monitoring during food processing and daily life. Here, we designed a novel electrochemical sensor for CBD detection. In this method, iron oxyhydroxide nanomaterial (β-FeOOH) was first prepared by hydrothermal method. Then, a molecularly imprinted polymer (MIP) layer was electropolymerized on the surface using CBD as the template and resorcinol (RC) as the functional monomer. The synergistic interaction between β-FeOOH and MIP endows the MIP/β-FeOOH/CC-based electrochemical sensor with high specificity and sensitivity. Under optimal conditions, the MIP/β-FeOOH/CC-based sensor showed a wide linear range of 39 pM-80 nM for CBD and a detection limit as low as 25 pM. Therefore, the as-prepared sensor can be a practical and effective tool for pesticide residue detection.
Collapse
Affiliation(s)
- Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| | - Xuhua Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Xiangyu Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Jifan Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China
| | - Ting Lian
- School of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Haihua Wang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science & Technology, Xi'an, 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an, 710021, China.
| |
Collapse
|
5
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
6
|
Wu L, Wu T, Zeng W, Zhou S, Zhang W, Ma J. A new ratiometric molecularly imprinted electrochemical sensor for the detection of Sunset Yellow based on gold nanoparticles. Food Chem 2023; 413:135600. [PMID: 36758389 DOI: 10.1016/j.foodchem.2023.135600] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
Since a high dosage or excessive intake of Sunset Yellow (SY) may pose a threat to human health, it is in great demand to construct an effective method to detect and control SY. Based on the molecularly imprinted polymers (MIPs) and dual-signal output mode, a ratiometric molecularly imprinted electrochemical sensor (RMIECs) was developed for sensitive detection of SY. AuNPs not only provided a large specific surface area to enhance the electron transfer rate but also served as a reference signal (S1), together with SY signal (S2), to produce dual signals. For a proof-of-application study, RMIECs was applied to detect SY with a wide linear range from 10 nM to 100 μM and a low detection limit (LOD) of 1.60 nM (S/N = 3, n = 3). Besides, the method was applied in spiked food samples with recoveries of 94.0 ∼ 97.0 % as well as relative errors of 5.4 ∼ 8.3 %, revealing its promising potential in detection of SY.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China; Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Weimin Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|
7
|
Ndunda EN, Mwanza MM. Towards miniaturized electrochemical sensors for monitoring of polychlorinated biphenyls. OPEN RESEARCH AFRICA 2023; 6:5. [PMID: 37224321 PMCID: PMC10192943 DOI: 10.12688/openresafrica.13983.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/26/2023]
Abstract
Pollution of our environment as a result of industrialization and other human activities is a growing concern due to the harmful effects of most chemicals that are released into the environment. Of particular interest are the persistent organic pollutants (POPs) that are reported to be toxic and build up in the environment due to their persistence. Among the POPs are polychlorinated biphenyls (PCBs), which were widely used in the past in various applications ranging from additives in pesticides to dielectric fluids in electrical equipment. As a way of protecting the one health trilogy (environment, human and animal health), their determination in the environment is a paramount call that has seen researchers continue to provide advanced technologies towards achieving this goal. These technologies involve the conventional gold standard gas chromatography systems coupled to sensitive detectors that can detect trace level concentrations. They have come in handy in monitoring of PCBs but their application for routing monitoring may not be sustainable because of the cost of operation associated with them and the need for experts to run the equipment. As a result, there is need for affordable systems that are still able to achieve the required sensitivity for routine monitoring and real-time data acquisition. Sensor systems fit very well in this category since they can be miniaturized for affordability and portray many other desirable features. PCBs as environmentally relevant environmental pollutants have received minimal attention with regards to sensor development and this review highlights the efforts that have been made so far. It provides in-depth discussions on electrochemical sensors and the various modifications that have been employed to date to achieve detection of PCBs at low concentrations as well as the future prospects in remote and routine monitoring.
Collapse
Affiliation(s)
- Elizabeth Nthambi Ndunda
- Department of Physical Sciences, School of Pure and Applied Sciences, Machakos University, Machakos, Machakos County, Kenya
| | - Moses Mutiso Mwanza
- Department of Physical Sciences, School of Pure and Applied Sciences, Machakos University, Machakos, Machakos County, Kenya
| |
Collapse
|
8
|
Beladghame O, Bouchikhi N, Lerari D, Charif IE, Soppera O, Maschke U, Bedjaoui-Alachaher L. Elaboration and characterization of molecularly imprinted polymer films based on acrylate for recognition of 2,4-D herbicide analogue. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
10
|
Wei J, Liu C, Wu T, Zeng W, Hu B, Zhou S, Wu L. A review of current status of ratiometric molecularly imprinted electrochemical sensors: From design to applications. Anal Chim Acta 2022; 1230:340273. [DOI: 10.1016/j.aca.2022.340273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
|
11
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|