1
|
Yu R, Feng S, Sun Q, Xu H, Jiang Q, Guo J, Dai B, Cui D, Wang K. Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications. J Nanobiotechnology 2024; 22:497. [PMID: 39164735 PMCID: PMC11334586 DOI: 10.1186/s12951-024-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.
Collapse
Affiliation(s)
- Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Tohidinejad Z, Danyali S, Valizadeh M, Seepold R, TaheriNejad N, Haghi M. Designing a Hybrid Energy-Efficient Harvesting System for Head- or Wrist-Worn Healthcare Wearable Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:5219. [PMID: 39204914 PMCID: PMC11359008 DOI: 10.3390/s24165219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Battery power is crucial for wearable devices as it ensures continuous operation, which is critical for real-time health monitoring and emergency alerts. One solution for long-lasting monitoring is energy harvesting systems. Ensuring a consistent energy supply from variable sources for reliable device performance is a major challenge. Additionally, integrating energy harvesting components without compromising the wearability, comfort, and esthetic design of healthcare devices presents a significant bottleneck. Here, we show that with a meticulous design using small and highly efficient photovoltaic (PV) panels, compact thermoelectric (TEG) modules, and two ultra-low-power BQ25504 DC-DC boost converters, the battery life can increase from 9.31 h to over 18 h. The parallel connection of boost converters at two points of the output allows both energy sources to individually achieve maximum power point tracking (MPPT) during battery charging. We found that under specific conditions such as facing the sun for more than two hours, the device became self-powered. Our results demonstrate the long-term and stable performance of the sensor node with an efficiency of 96%. Given the high-power density of solar cells outdoors, a combination of PV and TEG energy can harvest energy quickly and sufficiently from sunlight and body heat. The small form factor of the harvesting system and the environmental conditions of particular occupations such as the oil and gas industry make it suitable for health monitoring wearables worn on the head, face, or wrist region, targeting outdoor workers.
Collapse
Affiliation(s)
- Zahra Tohidinejad
- Department of Electrical Engineering, Ilam University, Ilam 69315-516, Iran; (Z.T.); (M.V.)
| | - Saeed Danyali
- Department of Electrical Engineering, Ilam University, Ilam 69315-516, Iran; (Z.T.); (M.V.)
| | - Majid Valizadeh
- Department of Electrical Engineering, Ilam University, Ilam 69315-516, Iran; (Z.T.); (M.V.)
| | - Ralf Seepold
- Ubiquitous Computing Laboratory, HTWG Konstanz—University of Applied Sciences, 78462 Konstanz, Germany;
| | - Nima TaheriNejad
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany;
| | - Mostafa Haghi
- Institute of Computer Engineering, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
3
|
Chen C, Wang Y, Wang H, Wang X, Tian M. Electronic Skin Based on Polydopamine-Modified Superelastic Fibers with Superior Conductivity and Durability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:438. [PMID: 38470769 DOI: 10.3390/nano14050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Owing to their excellent elasticities and adaptability as sensing materials, ionic hydrogels exhibit significant promise in the field of intelligent wearable devices. Nonetheless, molecular chains within the polymer network of hydrogels are susceptible to damage, leading to crack extension. Hence, we drew inspiration from the composite structure of the human dermis to engineer a composite hydrogel, incorporating dopamine-modified elastic fibers as a reinforcement. This approach mitigates crack expansion and augments sensor sensitivity by fostering intermolecular forces between the dopamine on the fibers, the hydrogel backbone, and water molecules. The design of this composite hydrogel elevates its breaking tensile capacity from 35 KJ to 203 KJ, significantly enhancing the fatigue resistance of the hydrogel. Remarkably, its electrical properties endure stability even after 2000 cycles of testing, and it manifests heightened sensitivity compared to conventional hydrogel configurations. This investigation unveils a novel method for crafting composite-structured hydrogels.
Collapse
Affiliation(s)
- Chengfeng Chen
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Shandong Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Yimiao Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Hang Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Shandong Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Xinqing Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Mingwei Tian
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Deng Y, Yang M, Xiao G, Jiang X. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Int J Biol Macromol 2024; 257:128566. [PMID: 38056752 DOI: 10.1016/j.ijbiomac.2023.128566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Conductive hydrogels have shown a great potential in the field of flexible electronic devices. However, conductive hydrogels prepare by traditional methods are difficult to combine high strength and toughness, which limits their application in various fields. In this study, a strategy for preparing conductive hydrogels with high strength and toughness by using the synergistic effect of biomineralization and salting-out was pioneered. In simple terms, by immersing the CaCl2 doped soy protein isolate/poly(vinyl alcohol)/dimethyl sulfoxide (SPI/PVA/DMSO) hydrogel in Na2CO3 and Na3Cit complex solution, the biomineralization aroused by Ca2+ and CO32-, and the salting-out effect of both NaCl and Na3Cit would enhance the mechanical properties of SPI/PVA/DMSO hydrogel. Meanwhile, the ionic conductivity of the hydrogel would also increase due the introduction of cation and anion. The mechanical and electrical properties of SPI/PVA/DMSO/CaCO3/Na3Cit hydrogels were significantly enhanced by the synergistic effect of biomineralization and salting-out. The optimum tensile strength, toughness, Young's modulus and ionic conductivity of the hydrogel were 1.4 ± 0.08 MPa, 0.51 ± 0.04 MPa and 1.46 ± 0.01 S/m, respectively. The SPI/PVA/DMSO/CaCO3/Na3Cit hydrogel was assembled into a strain sensor. The strain sensor had good sensitivity (GF = 3.18, strain in 20 %-500 %) and could be used to accurately detect various human movements.
Collapse
Affiliation(s)
- Yingxue Deng
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Mohan Yang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Gao Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362114, China.
| |
Collapse
|
5
|
Ju F, Wang Y, Yin B, Zhao M, Zhang Y, Gong Y, Jiao C. Microfluidic Wearable Devices for Sports Applications. MICROMACHINES 2023; 14:1792. [PMID: 37763955 PMCID: PMC10535163 DOI: 10.3390/mi14091792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
This study aimed to systematically review the application and research progress of flexible microfluidic wearable devices in the field of sports. The research team thoroughly investigated the use of life signal-monitoring technology for flexible wearable devices in the domain of sports. In addition, the classification of applications, the current status, and the developmental trends of similar products and equipment were evaluated. Scholars expect the provision of valuable references and guidance for related research and the development of the sports industry. The use of microfluidic detection for collecting biomarkers can mitigate the impact of sweat on movements that are common in sports and can also address the issue of discomfort after prolonged use. Flexible wearable gadgets are normally utilized to monitor athletic performance, rehabilitation, and training. Nevertheless, the research and development of such devices is limited, mostly catering to professional athletes. Devices for those who are inexperienced in sports and disabled populations are lacking. Conclusions: Upgrading microfluidic chip technology can lead to accurate and safe sports monitoring. Moreover, the development of multi-functional and multi-site devices can provide technical support to athletes during their training and competitions while also fostering technological innovation in the field of sports science.
Collapse
Affiliation(s)
- Fangyuan Ju
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yujie Wang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Mengyun Zhao
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yupeng Zhang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yuanyuan Gong
- Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| | - Changgeng Jiao
- Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| |
Collapse
|
6
|
Liu K, Ji S, Liu Y, Gao C, Zhang S, Fu J, Dai L. Analysis of Ankle Muscle Dynamics during the STS Process Based on Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:6607. [PMID: 37514901 PMCID: PMC10385903 DOI: 10.3390/s23146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Ankle joint moment is an important indicator for evaluating the stability of the human body during the sit-to-stand (STS) movement, so a method to analyze ankle joint moment is needed. In this study, a wearable sensor system that could derive surface-electromyography (sEMG) signals and kinematic signals on the lower limbs was developed for non-invasive estimation of ankle muscle dynamics during the STS movement. Based on the established ankle joint musculoskeletal information and sEMG signals, ankle joint moment during the STS movement was calculated. In addition, based on a four-segment STS dynamic model and kinematic signals, ankle joint moment during the STS movement was calculated using the inverse dynamics method. Ten healthy young people participated in the experiment, who wore a self-developed wearable sensor system and performed STS movements as an experimental task. The results showed that there was a high correlation (all R ≥ 0.88) between the results of the two methods for estimating ankle joint moment. The research in this paper can provide theoretical support for the development of an intelligent bionic joint actuator and clinical rehabilitation evaluation.
Collapse
Affiliation(s)
- Kun Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Shuo Ji
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Yong Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Chi Gao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Shizhong Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Jun Fu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Lei Dai
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
7
|
Georgopoulou A, Srisawadi S, Wiroonpochit P, Clemens F. Soft Wearable Piezoresistive Sensors Based on Natural Rubber Fabricated with a Customized Vat-Based Additive Manufacturing Process. Polymers (Basel) 2023; 15:polym15102410. [PMID: 37242985 DOI: 10.3390/polym15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Piezoresistive sensors for monitoring human motions are essential for the prevention and treatment of injury. Natural rubber is a material of renewable origin that can be used for the development of soft wearable sensors. In this study, natural rubber was combined with acetylene black to develop a soft piezoresistive sensing composite for monitoring the motion of human joints. An additive manufacturing technique based on stereolithography was used, and it was seen that the sensors produced with the method could detect even small strains (<10%) successfully. With the same sensor composite fabricated by mold casting, it was not possible to detect low strains reliably. TEM microscopy revealed that the distribution of the filler was not homogeneous for the cast samples, suggesting a directionality of the conductive filler network. For the sensors fabricated through the stereolithography-based method, a homogeneous distribution could be achieved. Based on mechano-electrical characterization, it was seen that the samples produced with AM combined the ability to endure large elongations with a monotonic sensor response. Under dynamic conditions, the sensor response of the samples produced by 3D printing showed lower drift and lower signal relaxation. The piezoresistive sensors were examined for monitoring the motion of the human finger joints. By increasing the bending angle of the sensor, it was possible to increase the sensitivity of the response. With the renewable origin of natural rubber and manufacturing method, the featured sensors can expand the applicability of soft flexible electronics in biomedical applications and devices.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- Department of Advanced Materials and Surfaces, Empa-Swiss Federal Laboratories for Material Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Sasitorn Srisawadi
- National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Panithi Wiroonpochit
- National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Frank Clemens
- Department of Advanced Materials and Surfaces, Empa-Swiss Federal Laboratories for Material Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|