1
|
Xue L, Liao M, Lin J. An all-in-one microfluidic SlipChip for power-free and rapid biosensing of pathogenic bacteria. LAB ON A CHIP 2024; 24:4039-4049. [PMID: 39108250 DOI: 10.1039/d4lc00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Point-of-care testing of pathogens is becoming more and more important for the prevention and control of food poisoning. Herein, a power-free colorimetric biosensor was presented for rapid detection of Salmonella using a microfluidic SlipChip for fluidic control and Au@PtPd nanocatalysts for signal amplification. All the procedures, including solution mixing, immune reaction, magnetic separation, residual washing, mimicking catalysis and colorimetric detection, were integrated on this SlipChip. First, the mixture of the bacterial sample, immune magnetic nanobeads (IMBs) and immune Au@PtPd nanocatalysts (INCs), washing buffer and H2O2-TMB chromogenic substrate were preloaded into the sample, washing and catalysis chambers, respectively. After the top layer of this SlipChip was slid to connect the sample chamber with the separation chamber, the mixture was moved back and forth through the asymmetrical split-and-recombine micromixer by using a disposable syringe to form the IMB-Salmonella-INC sandwich conjugates. Then, the conjugates were captured in the separation chamber using a magnetic field, and the top layer was slid to connect the washing chamber with the separation chamber for washing away excessive INCs. Finally, the top layer was slid to connect the catalysis chamber with the separation chamber, and the colorless substrate was catalyzed by the INCs with peroxidase-mimic activity to generate color change, followed by using a smartphone app to collect and analyze the image to determine the bacterial concentration. This all-in-one microfluidic biosensor enabled simple detection of Salmonella as low as 101.2 CFU mL-1 within 30 min and was featured with low cost, straightforward operation, and compact design.
Collapse
Affiliation(s)
- Li Xue
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Huang Q, Wang K, Wang Y. Highly sensitive miRNA-21 detection with enzyme-free cascade amplification biosensor. Talanta 2024; 273:125928. [PMID: 38508125 DOI: 10.1016/j.talanta.2024.125928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
In this study, we present an enzyme-free fluorescence biosensor for the highly sensitive detection of miRNA-21, a crucial biomarker in clinical diagnosis. Our innovative approach combines catalytic hairpin assembly (CHA) and entropy-driven amplification into a cascade amplification strategy. MicroRNA initiates the catalytic hairpin assembly reaction, liberating the trigger region needed for the entropy-driven amplification reaction. This triggers a series of strand displacement reactions, resulting in the separation of the fluorescence resonance energy transfer pair and an amplified fluorescence signal from FAM. Our cascade amplification strategy achieves ultra-sensitive microRNA detection, with an impressive limit of detection (LOD) of 1.3 fM, approximately 100-fold lower than CHA alone. Additionally, we successfully applied this biosensor for microRNA quantification in human serum and cell lysates, demonstrating its practicality and potential for early diagnosis.
Collapse
Affiliation(s)
- Qiuyan Huang
- School of Chemistry and Enviromental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| | - Yuan Wang
- School of Chemistry and Enviromental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
3
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
4
|
Li D, Huang Q, Wang K. Exonuclease III-propelled DNAzyme walker: an electrochemical strategy for microRNA diagnostics. Mikrochim Acta 2024; 191:173. [PMID: 38436735 DOI: 10.1007/s00604-024-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.
Collapse
Affiliation(s)
- Dengke Li
- Department of Rehabilitation Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| |
Collapse
|
5
|
Alatzoglou C, Tzianni EI, Patila M, Trachioti MG, Prodromidis MI, Stamatis H. Structure-Function Studies of Glucose Oxidase in the Presence of Carbon Nanotubes and Bio-Graphene for the Development of Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:85. [PMID: 38202540 PMCID: PMC10780548 DOI: 10.3390/nano14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this work, we investigated the effect of multi-walled carbon nanotubes (MWCNTs) and bio-graphene (bG) on the structure and activity of glucose oxidase (GOx), as well as on the performance of the respective electrochemical glucose biosensors. Various spectroscopic techniques were applied to evaluate conformational changes in GOx molecules induced by the presence of MWCNTs and bG. The results showed that MWCNTs induced changes in the flavin adenine dinucleotide (FAD) prosthetic group of GOx, and the tryptophan residues were exposed to a more hydrophobic environment. Moreover, MWCNTs caused protein unfolding and conversion of α-helix to β-sheet structure, whereas bG did not affect the secondary and tertiary structure of GOx. The effect of the structural changes was mirrored by a decrease in the activity of GOx (7%) in the presence of MWCNTs, whereas the enzyme preserved its activity in the presence of bG. The beneficial properties of bG over MWCNTs on GOx activity were further supported by electrochemical data at two glucose biosensors based on GOx entrapped in chitosan gel in the presence of bG or MWCNTs. bG-based biosensors exhibited a 1.33-fold increased sensitivity and improved reproducibility for determining glucose over the sweat-relevant concentration range of glucose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Eleni I. Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Maria G. Trachioti
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Mamas I. Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| |
Collapse
|