1
|
Qiang W, Wang W, Shen T, Wu S, Yu S, Zhang X, Yang Y, Li X, Li E, Gong F. Pyridaben inhibits cell cycle progression and delays early embryonic development in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116857. [PMID: 39137465 DOI: 10.1016/j.ecoenv.2024.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Pyridaben is a broad-spectrum, contact-killing acaricide that can be used to control a variety of harmful food and plant mites. Pyridaben displays cardiotoxicity and liver toxicity toward fish, but the effects on fish embryonic development have not been characterized. We exposed early zebrafish embryos to 20, 30, and 40 μg/L concentrations of pyridaben. The exposure caused developmental abnormalities, including delayed embryonic shield formation, yolk sac resorption, decreases in body length, reduced pigmentation, and delays in hatching. Pyridaben caused a significant increase in the transcription level of the endoderm marker foxa2, but the transcription levels of the ectoderm development marker foxb1a and the mesoderm development marker snaila were not significantly altered. The transcription levels of the genes SOX17 in early embryos were significantly reduced. After exposure to pyridaben, catalase (CAT) activity and glutathione (GSH) content were increased, and cyclin D1, that is involved in early embryonic development, was abnormally expressed. This study shows that pyridaben causes anomalous development in zebrafish embryos by interfering with the cell cycle order of early embryonic development and inducing excessive oxidative stress. Colivelin, an agonist of the STAT3 signaling pathway, acted as a salvage drug to restore the cell cycle order during embryonic development following exposure to pyridaben. Thus, the toxic effects may be caused by pyridaben's regulation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Weidong Qiang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Wenwen Wang
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Tianzhu Shen
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shuhui Wu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Shengnan Yu
- College of Medicine, Huanghuai University, Zhumadian 463000, China; Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaomei Zhang
- College of Pharmacy, Jilin University of Medicine, Jilin 132000, China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China
| | - Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| | - Enzhong Li
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian 463000, China; College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Fanghua Gong
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Guo Z, Deng M, Fang W, Zheng K, Liao M, Wang Y, Fang Q. Quantitative determination of prothioconazole in wheat grain, soybean, and pond water based on a polyclonal antibody. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4074-4082. [PMID: 38855900 DOI: 10.1039/d4ay00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Prothioconazole and its metabolite are considered a potential threat to human health and environmental safety. Thus, the development of a sensitive and rapid detection method for prothioconazole is crucial to ensure the safety of agricultural products. In this study, a new hapten of prothioconazole was designed and synthesized, and a selective polyclonal antibody with high affinity against prothioconazole was produced, which was obtained from immunized New Zealand white rabbits. Based on the polyclonal antibody, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) were developed for detecting prothioconazole pesticides. Under optimized experimental conditions, the limit of quantification (LOQ) values for ic-CLEIA and ic-ELISA were 1.8 and 10.7 ng mL-1, respectively. The results demonstrated that the sensitivity (LOQ) achieved by ic-CLEIA was more than five times higher compared to that obtained with ic-ELISA. In addition, the recoveries obtained by adding standard prothioconazole to wheat grain, soybean, and pond water samples were in the range of 81.9 to 104.7% for ic-ELISA and 89.0 to 118.0% for ic-CLEIA.
Collapse
Affiliation(s)
- Zhihui Guo
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China.
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Mingya Deng
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Wenwen Fang
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Kang Zheng
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Food Quality Supervision and Testing Center of Ministry of Agriculture, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Qingkui Fang
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China.
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- School of Plant Protection, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Gao Q, Chen L, An Z, Wang Y, Yang D, Wang Z, Kang J, Barnych B, Hammock BD, Huo J, Zhang J. Development of an immunoassay based on a specific antibody for the detection of diphenyl ether herbicide fomesafen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169858. [PMID: 38190900 PMCID: PMC10871040 DOI: 10.1016/j.scitotenv.2023.169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Fomesafen belongs to the diphenyl ether herbicide, and is widely used in the control of broadleaf weeds in crop fields due to its high efficiency and good selectivity. The residual of fomesafen in soil has a toxic effect on subsequent sensitive crops and the microbial community structure because of its long residual period. Therefore, an efficient method for detecting fomesafen is critical to guide the correct and reasonable use of this herbicide. Rapid and sensitive immunoassay methods for fomesafen is unavailable due to the lack of specific antibody. In this study, a specific antibody for fomesafen was generated based on rational design of haptens and a sensitive immunoassay method was established. The half maximal inhibitory concentration (IC50) of the immunoassay was 39 ng/mL with a linear range (IC10-90) of 1.92-779.8 ng/mL. In addition, the developed assay had a good correlation with the standard UPLC-MS/MS both in the spike-recovery studies and in the detection of real soil samples. Overall, the developed indirect competitive enzyme immunoassay reported here is important for detecting and quantifying fomesafen contamination in soil and other environmental samples with good sensitivity and high reproducibility.
Collapse
Affiliation(s)
- Qingqing Gao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Yasen Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Zhengzhong Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Jia Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, PR China.
| |
Collapse
|