1
|
An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. Int J Mol Sci 2023; 24:ijms24021006. [PMID: 36674523 PMCID: PMC9867480 DOI: 10.3390/ijms24021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Three-dimensional (3D) culture platforms have been adopted in a high-throughput screening (HTS) system to mimic in vivo physiological microenvironments. The automated dispenser has been established commercially to enable spotting or distributing non-viscous or viscous biomaterials onto microplates. However, there are still challenges to the precise and accurate dispensation of cells embedded in hydrogels such as Alginate- and Matrigel-extracellular matrices. We developed and improved an automated contact-free dispensing machine, the ASFA SPOTTER (V5 and V6), which is compatible with 96- and 384-pillar/well plates and 330- and 532-micropillar/well chips for the support of 3D spheroid/organoid models using bioprinting techniques. This enables the distribution of non-viscous and viscous biosamples, including chemical drugs and cancer cells, for large-scale drug screening at high speed and small volumes (20 to 4000 nanoliters) with no damage to cells. The ASFA SPOTTER (V5 and V6) utilizes a contact-free method that minimizes cross-contamination for the dispensation of encapsulated tissue cells with highly viscous scaffolds (over 70%). In particular, the SPOTTER V6 does not require a washing process and offers the advantage of almost no dead volume (defined as additional required sample volume, including a pre-shot and flushing shot for dispensing). It can be successfully applied for the achievement of an organoid culture in automation, with rapid and easy operation, as well as miniaturization for high-throughput screening. In this study, we report the advantages of the ASFA SPOTTER, which distributes standard-sized cell spots with hydrogels onto a 384-pillar/well plate with a fast dispensing speed, small-scale volume, accuracy, and precision.
Collapse
|
2
|
Bergamaschi G, Musicò A, Frigerio R, Strada A, Pizzi A, Talone B, Ghezzi J, Gautieri A, Chiari M, Metrangolo P, Vanna R, Baldelli Bombelli F, Cretich M, Gori A. Composite Peptide-Agarose Hydrogels for Robust and High-Sensitivity 3D Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4811-4822. [PMID: 35060693 DOI: 10.1021/acsami.1c18466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Canonical immunoassays rely on highly sensitive and specific capturing of circulating biomarkers by interacting biomolecular baits. In this frame, bioprobe immobilization in spatially discrete three-dimensional (3D) spots onto analytical surfaces by hydrogel encapsulation was shown to provide relevant advantages over conventional two-dimensional (2D) platforms. Yet, the broad application of 3D systems is still hampered by hurdles in matching their straightforward fabrication with optimal functional properties. Herein, we report on a composite hydrogel obtained by combining a self-assembling peptide (namely, Q3 peptide) with low-temperature gelling agarose that is proved to have simple and robust application in the fabrication of microdroplet arrays, overcoming hurdles and limitations commonly associated with 3D hydrogel assays. We demonstrate the real-case scenario feasibility of our 3D system in the profiling of Covid-19 patients' serum IgG immunoreactivity, which showed remarkably improved signal-to-noise ratio over canonical assays in the 2D format and exquisite specificity. Overall, the new two-component hydrogel widens the perspectives of hydrogel-based arrays and represents a step forward towards their routine use in analytical practices.
Collapse
Affiliation(s)
- Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Angelo Musicò
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Alessandro Strada
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Andrea Pizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Benedetta Talone
- Physics Department, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Jacopo Ghezzi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
- Biomolecular Engineering Lab, Dept. Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dept. Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Renzo Vanna
- Istituto di Fotonica e Nanotecnologie─National Research Council of Italy (IFN-CNR), 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SBNLab), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"─National Research Council of Italy (SCITEC-CNR), 20131 Milan, Italy
| |
Collapse
|
3
|
Kang SY, Joshi P, Lee MY. High-Throughput Screening of Compound Neurotoxicity Using 3D-Cultured Neural Stem Cells on a 384-Pillar Plate. Curr Protoc 2021; 1:e107. [PMID: 33887124 DOI: 10.1002/cpz1.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Assessing the neurotoxicity of test chemicals has typically been performed using two-dimensionally (2D)-cultured neuronal cell monolayers and animal models. The in vitro 2D cell models are simple and straightforward compared to animal models, which have the disadvantage of being relatively low throughput, expensive, and time consuming. Despite their extensive use in this area of neurotoxicology research, both models often do not accurately recapitulate human outcomes. To bridge this gap and attempt to better replicate what happens in vivo, three-dimensionally (3D) cultured neural stem cells (NSCs) encapsulated in hydrogels on a 384-pillar plate have been developed via miniature 3D bioprinting. This technology allows users to print NSCs on a pillar plate for rapid 3D cell culture as well as high-throughput compound screening. For this, the 384-pillar plate with bioprinted NSCs is sandwiched with a standard 384-well plate with growth medium for 3D culture, allowing researchers to expose the cells to test compounds and stain them with various fluorescent dyes for a suite of high-content imaging assays, including assays for DNA damage, mitochondrial impairment, cell membrane integrity, intracellular glutathione levels, and apoptosis. After acquiring cell images from an automated fluorescence microscope and extracting fluorescence intensities, researchers can obtain the IC50 value of each compound to evaluate critical parameters in neurotoxicity. Here, we provide a detailed description of protocols for cell printing on a 384-pillar plate, 3D NSC culture, compound testing, 3D cell staining, and image acquisition and analysis, which altogether will allow researchers to investigate mechanisms of compound neurotoxicity with 3D-cultured NSCs in a high-throughput manner. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Three-dimensional neural stem cell culture on a 384-pillar plate Basic Protocol 2: Compound treatment and cell staining Basic Protocol 3: Image acquisition, processing, and data analysis.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
4
|
Kwon S, Lee D, Gopal S, Ku A, Moon H, Dordick JS. Three‐dimensional in vitro cell culture devices using patient‐derived cells for high‐throughput screening of drug combinations. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seok‐Joon Kwon
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Dongwoo Lee
- Departments of Biomedical Engineering Konyang University Daejeon Korea
| | - Sneha Gopal
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Ashlyn Ku
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Hosang Moon
- MBD (Medical & Bio Decision) Co., Ltd. Suwon‐si Korea
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
5
|
Arslan M. Fabrication and reversible disulfide functionalization of PEGylated chitosan-based hydrogels: Platforms for selective immobilization and release of thiol-containing molecules. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
High-content imaging of 3D-cultured neural stem cells on a 384-pillar plate for the assessment of cytotoxicity. Toxicol In Vitro 2020; 65:104765. [PMID: 31923580 DOI: 10.1016/j.tiv.2020.104765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
The assessment of neurotoxicity has been performed traditionally with animals. However, in vivo studies are highly expensive and time-consuming, and often do not correlate to human outcomes. Thus, there is a need for cost-effective, high-throughput, highly predictive alternative in vitro test methods based on early markers of mechanisms of toxicity. High-content imaging (HCI) assays performed on three-dimensionally (3D) cultured cells could provide better understanding of the mechanism of toxicity needed to predict neurotoxicity in humans. However, current 3D cell culture systems lack the throughput required for screening neurotoxicity against a large number of chemicals. Therefore, we have developed miniature 3D neural stem cell (NSC) culture on a unique 384-pillar plate, which is complementary to conventional 384-well plates. Mitochondrial membrane impairment, intracellular glutathione level, cell membrane integrity, DNA damage, and apoptosis have been tested against 3D-cultured ReNcell VM on the 384-pillar plate with four model compounds rotenone, 4-aminopyridine, digoxin, and topotecan. The HCI assays performed in 3D-cultured ReNcell VM on the 384-pillar plates were highly robust and reproducible as indicated by the average Z' factor of 0.6 and CV values around 12%. From concentration-response curves and IC50 values, mitochondrial membrane impairment appears to be the early stage marker of cell death by the compounds.
Collapse
|
7
|
Hong S, Samson AAS, Song JM. Application of fluorescence resonance energy transfer to bioprinting. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
|
9
|
Won JY, Lee MH, Kim MJ, Min KH, Ahn G, Han JS, Jin S, Yun WS, Shim JH. A potential dermal substitute using decellularized dermis extracellular matrix derived bio-ink. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:644-649. [PMID: 30873886 DOI: 10.1080/21691401.2019.1575842] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Upon bioprinting, cells are mixed with a biomaterial to fabricate a living tissue, thus emphasizing the importance of biomaterials. The biomaterial used in this study was a bio-ink prepared using skin decellularized extracellular matrix (dECM). Skin dECM was extracted by treating the dermis with chemicals and enzymes; the basic structural and functional proteins of the ECM, including collagen, glycosaminoglycans (GAGs), bioreactive materials and growth factors, were preserved, whereas the resident cells that might cause immune rejection or inflammatory responses were removed. The bio-ink based on dECM powder, together with human dermal fibroblasts (HDFs), was loaded into the nozzle of the 3D bioprinter to create the 3D construct. This construct underwent gelation with changing temperature while its shape was maintained for 7 days. The cells showed over 90% viability and proliferation. By analysing the gene expression pattern in the cells of the construct, the skin regenerative mechanism of the bio-ink was verified. Microarray results confirmed that the gene expression related to skin morphology and development had been enhanced because the bioreactive molecules and growth factors, in addition to residual ECM in dECM, provided an optimal condition for the HDFs.
Collapse
Affiliation(s)
- Joo-Yun Won
- a Research Institute , T&R Biofab Co. Ltd. , Siheung-si , Republic of Korea
| | - Mi-Hee Lee
- a Research Institute , T&R Biofab Co. Ltd. , Siheung-si , Republic of Korea
| | - Mi-Jeong Kim
- a Research Institute , T&R Biofab Co. Ltd. , Siheung-si , Republic of Korea
| | - Kyung-Hyun Min
- a Research Institute , T&R Biofab Co. Ltd. , Siheung-si , Republic of Korea
| | - Geunseon Ahn
- a Research Institute , T&R Biofab Co. Ltd. , Siheung-si , Republic of Korea
| | - Ji-Seok Han
- b Department of Advanced Toxicology Research , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea
| | - Songwan Jin
- c Department of Mechanical Engineering , Korea Polytechnic University , Siheung-si , Republic of Korea
| | - Won-Soo Yun
- c Department of Mechanical Engineering , Korea Polytechnic University , Siheung-si , Republic of Korea
| | - Jin-Hyung Shim
- c Department of Mechanical Engineering , Korea Polytechnic University , Siheung-si , Republic of Korea
| |
Collapse
|
10
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
11
|
3D-cultured neural stem cell microarrays on a micropillar chip for high-throughput developmental neurotoxicology. Exp Cell Res 2018; 370:680-691. [PMID: 30048616 DOI: 10.1016/j.yexcr.2018.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/08/2023]
Abstract
Numerous chemicals including environmental toxicants and drugs have not been fully evaluated for developmental neurotoxicity. A key gap exists in the ability to predict accurately and robustly in vivo outcomes based on in vitro assays. This is particularly the case for predicting the toxicity of chemicals on the developing human brain. A critical need for such in vitro assays is choice of a suitable model cell type. To that end, we have performed high-throughput in vitro assessment of proliferation and differentiation of human neural stem cells (hNSCs). Conventional in vitro assays typically use immunofluorescence staining to quantify changes in cell morphology and expression of neural cell-specific biomarkers, which is often time-consuming and subject to variable specificities of available antibodies. To alleviate these limitations, we developed a miniaturized, three-dimensional (3D) hNSC culture with ReNcell VM on microarray chip platforms and established a high-throughput promoter-reporter assay system using recombinant lentiviruses on hNSC spheroids to assess cell viability, self-renewal, and differentiation. Optimum cell viability and spheroid formation of 3D ReNcell VM culture were observed on a micropillar chip over a period of 9 days in a mixture of 0.75% (w/v) alginate and 1 mg/mL growth factor reduced (GFR) Matrigel with 25 mM CaCl2 as a crosslinker for alginate. In addition, 3D ReNcell VM culture exhibited self-renewal and differentiation on the microarray chip platform, which was efficiently monitored by enhanced green fluorescent protein (EGFP) expression of four NSC-specific biomarkers including sex determining region Y-box 2 (SOX2), glial fibrillary acidic protein (GFAP), synapsin1, and myelin basic protein (MBP) with the promoter-reporter assay system.
Collapse
|
12
|
Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, Guo Y, Wu M, Chen Y, Li W, Wang J, Du Y. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials 2018; 198:167-179. [PMID: 29807624 DOI: 10.1016/j.biomaterials.2018.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022]
Abstract
Oncology drug development is greatly hampered by inefficient drug screening using 2D culture. Herein, we present ready-to-use micro-scaffolds in 384-well format to generate uniform 3D micro-tumor array (3D-MTA, CV < 0.15) that predicts in vivo drug responses more accurately than 2D monolayer. 3D-MTA generated from both cell lines and primary cells achieved high screen quality (Z' > 0.5), and were compatible with standard high throughput and high content instruments. Doxorubicin identified by 3D-MTA and 2D successfully inhibited tumor growth in mice bearing lung cancer cell line (H226) xenografts, but not gemcitabine and vinorelbine, which were selected solely by 2D. Resistance towards targeted therapy was modeled on 3D-MTA, which elicited SK-BR-3 to express higher proliferation-related genes in response to gefitinb, as compared to 2D. Screening of 56 MAPK inhibitors identified pisamertib to synergistically improve cytotoxicity effect in combination with gefitinib. Primary tumor cells derived from patient-derived xenografts further attested concordance of drug response in 3D-MTA with in vivo response. 3D-MTA was further extended to realize chemosensitivity testing using patient-derived cells. Overall, 3D-MTA demonstrated strong potential to accelerate drug discovery and improve cancer treatment by providing efficient drug screening.
Collapse
Affiliation(s)
- Xiaojun Yan
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Lyu Zhou
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China; School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Xun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China
| | - Yanan Guo
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Min Wu
- Beijing Biocytogen Co., Ltd, Beijing, 100176, PR China
| | - Yuyang Chen
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Beijing, 100044, PR China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
13
|
Yu S, Joshi P, Park YJ, Yu KN, Lee MY. Deconvolution of images from 3D printed cells in layers on a chip. Biotechnol Prog 2017; 34:445-454. [PMID: 29240313 DOI: 10.1002/btpr.2591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/19/2017] [Indexed: 01/14/2023]
Abstract
Layer-by-layer cell printing is useful in mimicking layered tissue structures inside the human body and has great potential for being a promising tool in the field of tissue engineering, regenerative medicine, and drug discovery. However, imaging human cells cultured in multiple hydrogel layers in 3D-printed tissue constructs is challenging as the cells are not in a single focal plane. Although confocal microscopy could be a potential solution for this issue, it compromises the throughput which is a key factor in rapidly screening drug efficacy and toxicity in pharmaceutical industries. With epifluorescence microscopy, the throughput can be maintained at a cost of blurred cell images from printed tissue constructs. To rapidly acquire in-focus cell images from bioprinted tissues using an epifluorescence microscope, we created two layers of Hep3B human hepatoma cells by printing green and red fluorescently labeled Hep3B cells encapsulated in two alginate layers in a microwell chip. In-focus fluorescent cell images were obtained in high throughput using an automated epifluorescence microscopy coupled with image analysis algorithms, including three deconvolution methods in combination with three kernel estimation methods, generating a total of nine deconvolution paths. As a result, a combination of Inter-Level Intra-Level Deconvolution (ILILD) algorithm and Richardson-Lucy (RL) kernel estimation proved to be highly useful in bringing out-of-focus cell images into focus, thus rapidly yielding more sensitive and accurate fluorescence reading from the cells in different layers. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:445-454, 2018.
Collapse
Affiliation(s)
- Sean Yu
- Dept. of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall, 1960 East 24th Street, Cleveland, OH, 44115
| | - Pranav Joshi
- Dept. of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall, 1960 East 24th Street, Cleveland, OH, 44115
| | - Yi Ju Park
- Advanced Technology Inc. (ATI), 112 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Kyeong-Nam Yu
- Dept. of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall, 1960 East 24th Street, Cleveland, OH, 44115
| | - Moo-Yeal Lee
- Dept. of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall, 1960 East 24th Street, Cleveland, OH, 44115
| |
Collapse
|
14
|
Omami M, McGarrigle JJ, Reedy M, Isa D, Ghani S, Marchese E, Bochenek MA, Longi M, Xing Y, Joshi I, Wang Y, Oberholzer J. Islet Microencapsulation: Strategies and Clinical Status in Diabetes. Curr Diab Rep 2017; 17:47. [PMID: 28523592 DOI: 10.1007/s11892-017-0877-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. RECENT FINDINGS Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.
Collapse
Affiliation(s)
- Mustafa Omami
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - James J McGarrigle
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA.
| | - Mick Reedy
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Douglas Isa
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Sofia Ghani
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Enza Marchese
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Matthew A Bochenek
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maha Longi
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Yuan Xing
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Joshi
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
| | - Yong Wang
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - José Oberholzer
- Department of Surgery, University of Illinois at Chicago, 840 S. Wood St. Room 502, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
16
|
Shin S, Ikram M, Subhan F, Kang HY, Lim Y, Lee R, Jin S, Jeong YH, Kwak JY, Na YJ, Yoon S. Alginate–marine collagen–agarose composite hydrogels as matrices for biomimetic 3D cell spheroid formation. RSC Adv 2016. [DOI: 10.1039/c6ra01937d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We report a novel, customizable, transparent, biocompatible, functional, easy-to-produce, efficient and cost-effective AmCA scaffold for 3D cell culture.
Collapse
|
17
|
Customizable engineered blood vessels using 3D printed inserts. Methods 2015; 99:20-7. [PMID: 26732049 DOI: 10.1016/j.ymeth.2015.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/15/2015] [Accepted: 12/24/2015] [Indexed: 11/21/2022] Open
Abstract
Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment.
Collapse
|