1
|
Mehta NK, Vaishnav A, Priyadarshini MB, Debbarma P, Hoque MS, Mondal P, Nor-Khaizura MAR, Bono G, Koirala P, Kettawan A, Nirmal NP. Formaldehyde contamination in seafood industry: an update on detection methods and legislations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54381-54401. [PMID: 39223414 DOI: 10.1007/s11356-024-34792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Seafood is abundant in high-quality protein, healthy fats (n-3 and n-6 PUFAs), minerals (calcium, magnesium, copper, selenium, and so on), and vitamin D. Functional compounds in seafood can protect against lifestyle-related diseases. Having had all the merits mentioned, it is also a highly putrefiable food item. To maintain quality and prolong seafood's shelf life, various chemicals have been added, including nitrite, sulfur dioxide, and formaldehyde. In this review, we summarize the uses, the incidence of added formalin contamination, and the approved limit for seafood products. Additionally, worldwide regulations or standards for the use of formalin in seafood products, as well as recent changes relevant to new methods, are highlighted. Although strict limits and regulations have been placed on the utilization of formaldehyde for seafood preservation, there are few incidences reported of formalin/formaldehyde detection in seafood products around Asian countries. In this context, various qualitative and quantitative detection methods for formaldehyde have been developed to ensure the presence of formaldehyde within acceptable limits. Besides this, different rules and regulations have been forced by each country to control formaldehyde incidence. Although it is not an issue of formaldehyde incidence in European countries, strict regulations are implemented and followed.
Collapse
Affiliation(s)
- Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India.
| | - Anand Vaishnav
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Payel Debbarma
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University, Lembucherra, Tripura, 799210, India
| | - Mohammad Sazedul Hoque
- Department of Fisheries Technology, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Pronoy Mondal
- Department of Fisheries Technology, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mahmud Ab Rashid Nor-Khaizura
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agricultural and Food Security, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara 61, Mazara del Vallo, 91026, Trapani, Italy
- Dipartimento Di Scienze E Tecnologie Biologiche, Chimiche E Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Aikkarach Kettawan
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
2
|
Skonta A, Bellou MG, Matikas TE, Stamatis H. Colorimetric Glucose Biosensor Based on Chitosan Films and Its Application for Glucose Detection in Beverages Using a Smartphone Application. BIOSENSORS 2024; 14:299. [PMID: 38920603 PMCID: PMC11201573 DOI: 10.3390/bios14060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Nowadays, biosensors are gaining increasing interest in foods' and beverages' quality control, owing to their economic production, enhanced sensitivity, specificity, and faster analysis. In particular, colorimetric biosensors can be combined with color recognition applications on smartphones for the detection of analytes, rendering the whole procedure more applicable in everyday life. Herein, chitosan (CS) films were prepared with the deep eutectic solvent (DES) choline chloride/urea/glycerol (ChCl:U:Gly). Glucose oxidase (GOx), a widely utilized enzyme in quality control, was immobilized within CS films through glutaraldehyde (GA), leading to the formation of CS/GOx films. The optimized GOx concentration and DES content were determined for the films. Moreover, the effect of the pH and temperature of the glucose oxidation reaction on the enzymatic activity of GOx was studied. The structure, stability, and specificity of the CS/GOx films as well as the Km values of free and immobilized GOx were also determined. Finally, the analytical performance of the films was studied by using both a spectrophotometer and a color recognition application on a smartphone. The results demonstrated that the films were highly accurate, specific to glucose, and stable when stored at 4 °C for 4 weeks and when reused 10 times, without evident activity loss. Furthermore, the films displayed a good linear response range (0.1-0.8 mM) and a good limit of detection (LOD, 33 μM), thus being appropriate for the estimation of glucose concentration in real samples through a smartphone application.
Collapse
Affiliation(s)
- Anastasia Skonta
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Myrto G. Bellou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| | - Theodore E. Matikas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (A.S.); (M.G.B.)
| |
Collapse
|
3
|
Bokthier Rahman M, Hussain M, Probha Kabiraz M, Nordin N, Anusha Siddiqui S, Bhowmik S, Begum M. An update on formaldehyde adulteration in food: sources, detection, mechanisms, and risk assessment. Food Chem 2023; 427:136761. [PMID: 37406446 DOI: 10.1016/j.foodchem.2023.136761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Formaldehyde is added illegally to food to extend its shelf life due to its antiseptic and preservation properties. Several research has been conducted to examine the consequences of adulteration with formaldehyde in food items. These findings suggest that adding formaldehyde to food is considered harmful as it accumulates in the body with long-term consumption. In this review includes study findings on food adulteration with formaldehyde and their assessment of food safety based on the analytical method applied to various geographical regions, food matrix types, and their sources in food items. Additionally, this review sought to assess the risk of formaldehyde-tainted food and the understanding of its development in food and its impacts on food safety in light of the widespread formaldehyde adulteration. Finally, the study would be useful as a manual for implementing adequate and successful risk assessment to increase food safety.
Collapse
Affiliation(s)
- Md Bokthier Rahman
- Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki, Patuakhali-8602, Bangladesh
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Noordiana Nordin
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany.
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand; Department of Food Science, University of Otago, Dunedin 9054, New Zealand; Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh.
| | - Mohajira Begum
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi-6204, Bangladesh
| |
Collapse
|
4
|
Jiang Y, Huang S, Liu M, Li Z, Xiao W, Zhang H, Yang L, Sun H. Systematic Screening of Trigger Moieties for Designing Formaldehyde Fluorescent Probes and Application in Live Cell Imaging. BIOSENSORS 2022; 12:855. [PMID: 36290992 PMCID: PMC9599387 DOI: 10.3390/bios12100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Formaldehyde (FA) is involved in multiple physiological regulatory processes and plays a crucial role in memory storage. Meanwhile, FA has a notorious reputation as a toxic compound, and it will cause a variety of diseases if its level is unbalanced in the human body. To date, there have been numerous fluorescent probes for FA imaging reported. Among them, the probes based on the 2-aza-Cope rearrangement have attracted the most attention, and their applications in cell imaging have been greatly expanded. Herein, we screened the various trigger moieties of FA fluorescent probes based on the mechanism of 2-aza-Cope rearrangement. FA-2, in which a fluorophore is connected to a 4-nitrobenzylamine group and an allyl group, demonstrated the highest sensitivity, selectivity, and reaction kinetics. Furthermore, FA-Lyso, derived from FA-2, has been successfully designed and applied to monitor exogenous and endogenous FA fluctuations in lysosomes of living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shumei Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Minghui Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zejun Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Weimin Xiao
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518110, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
6
|
Jinadasa B, Elliott C, Jayasinghe G. A review of the presence of formaldehyde in fish and seafood. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Fappiano L, Carriera F, Iannone A, Notardonato I, Avino P. A Review on Recent Sensing Methods for Determining Formaldehyde in Agri-Food Chain: A Comparison with the Conventional Analytical Approaches. Foods 2022; 11:1351. [PMID: 35564074 PMCID: PMC9102064 DOI: 10.3390/foods11091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 μg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.
Collapse
Affiliation(s)
| | | | | | | | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy; (L.F.); (F.C.); (A.I.); (I.N.)
| |
Collapse
|
8
|
Thepchuay Y, Chairit W, Saengsane N, Porrawatkul P, Pimsen R. Simple and Green Colorimetric Method for the Detection of Formaldehyde in Vegetable Samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Ahmad M, Heng LY, Tan LL. Optical enzymatic formaldehyde biosensor based on alcohol oxidase and pH-sensitive methacrylic-acrylic optode membrane. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120535. [PMID: 34749257 DOI: 10.1016/j.saa.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Optical biosensor for the detection of formaldehyde has been developed based on the transparent enzymatic stacked membranes system on the glass substrate, and employing optical absorption transducer with H+ ion-selective Nile Blue chromoionophore (NBCM) dye-doped methacrylic acrylic (MB28) copolymer membrane as the optode membrane. Alcohol oxidase (AOx) enzymes were entrapped within the biocompatible sol-gel matrix and deposited on top of the pH optode membrane. As the uppermost catalytic membrane catalyzes the oxidative conversion of formaldehyde to formic acid and hydrogen peroxide, the immobilized NBCM undergoes protonation reaction and forms HNBCM+, the dark blue ion-chromoionophore complex via H+ ion transfer reaction within the soft and flexible MB28 polymeric membrane. This rendered the enzymatic optode membrane absorbed a high yellow light intensity from the light source and exhibited maximum absorption peaks at 610 and 660 nm. Optical evaluation of formaldehyde by means on UV-vis absorption transduction of the enzymatic stacked membranes demonstrated rapid response time of 10 min with high sensitivity, good linearity and high reproducibility across a wide formaldehyde concentration range of 1 × 10-3-1 × 103 mM (R2 = 0.9913), and limit of detection (LOD) at 1 × 10-3 mM, which could be useful for formaldehyde assay in industrial, agricultural, environmental, food and beverages as well as medical samples. The formaldehyde concentration in snapper fish, pomfret fish and threadfin fish samples determined by the proposed optical enzymatic biosensor were very much close to the formaldehyde concentration values determined by the UV-vis spectrophotometric NASH standard method based on the statistical t-test. This suggests that the optical biosensor can be used as a reliable method for quantitative determination of formaldehyde levels in food samples.
Collapse
Affiliation(s)
- Musa Ahmad
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Department of Chemical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
11
|
Zhang H, Wu Z, Zhi Z, Gao W, Sun W, Hua Z, Wu Y. Practical and Efficient: A Pocket-Sized Device Enabling Detection of Formaldehyde Adulteration in Vegetables. ACS OMEGA 2022; 7:160-167. [PMID: 35036687 PMCID: PMC8756785 DOI: 10.1021/acsomega.1c04229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Formaldehyde, as a carcinogenic substance, is often intentionally used to adulterate vegetables to increase their shelf life, and the adhesive tape used to attach labels can also leave formaldehyde on the surface of vegetables. However, as the "gold" standard, gas chromatography (GC) and high-performance liquid chromatography (HPLC) are expensive for individual tests and confined to the laboratory owing to their size and a suitable detector (low-cost, portable, fast detection speed) to check formaldehyde contamination in vegetables not being available. Here, we tested formaldehyde contamination in vegetables using a low-cost and hand-held detector combined with a screen-printed electrode (SPE) amperometric sensor and an open-sourced potentiostat. The analyzer can detect a concentration of 100 μmol/L formaldehyde and achieve a good linear range between 100 and 1000 μmol/L. Furthermore, the detector successfully identified formaldehyde contamination in 53 samples of six different kinds of vegetables even after residual formaldehyde on the surface was evaporated. Most importantly, under the practicability-oriented idea, a cost-effective strategy was implemented for this detector design rather than using other pricey methods (e.g., photolithography, electron-beam evaporation, chemical deposition), which enormously reduces the cost (under ∼USD 0.5 per test) and meets all of the requirements of ASSURED device. We believe this cheap, portable detector could help law-enforcing authorities, healthcare workers, and customers to screen formaldehyde contamination easily. Also, the cost-saving strategy is appropriate for low-income areas, where there is a lack of laboratories, funds, and trained experts.
Collapse
|
12
|
Kundu M, Rajesh, Krishnan P, Gajjala S. Comparative Studies of Screen-Printed Electrode Based Electrochemical Biosensor with the Optical Biosensor for Formaldehyde Detection in Corn. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02604-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta 2020; 220:121388. [DOI: 10.1016/j.talanta.2020.121388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
|
14
|
Sun X, Zhang H, Hao S, Zhai J, Dong S. A Self-Powered Biosensor with a Flake Electrochromic Display for Electrochemical and Colorimetric Formaldehyde Detection. ACS Sens 2019; 4:2631-2637. [PMID: 31441298 DOI: 10.1021/acssensors.9b00917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formaldehyde biosensors with the features of cost effectiveness, high specificity, easy operation, and simplicity are urgently desired in routing and field detection of formaldehyde. Here, we report a new design of an enzymatic self-powered biosensor (ESPB) toward formaldehyde detection. The ESPB involves a formaldehyde dehydrogenase/poly-methylene green/buckypaper bioanode as the sensing electrode and a Prussian blue/Au nanoparticles/carbon fiber paper cathode as the electrochromic display. Formaldehyde acts as the fuel to drive the ESPB, relying on that the concentration of formaldehyde can be determined with the ESPB by both directly measuring the variance in short circuit current and observing the color change of the cathode. By measuring the variance in short circuit current, a linear detection range from 0.01 to 0.35 mM and a calculated detection limit of 0.006 mM are obtained, comparable to or better than those reported before. The color change of the cathode can be distinguished easily and exactly via the naked eye after immersing the ESPB in formaldehyde solution for 90 s with the concentration up to 0.35 mM, covering the permissive level of formaldehyde in some standards associated with environmental quality control. Specially, the formaldehyde concentration can be precisely quantified by analyzing the color change of the cathode digitally using the equation of B/(R + G + B). In the following test of real spiked samples of tap water and lake water, the recovery ratios of formaldehyde with the concentrations from 0.010 to 0.045 mM are tested to be between 95 and 100% by both measuring the variance in short circuit current and analyzing the color change of the cathode digitally. In addition, the ESPB exhibits negligible interference from acetaldehyde and ethanol and can be stored at 4 °C for 21 days with a loss of less than 8% in its initial value of short circuit current. Therefore, the ESPB with the capability of working like disposable test paper can be expected as a sensitive, simple, rapid, cost-effective colorimetric method with high selectivity in routing and field formaldehyde detection.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Kundu M, Prasad S, Krishnan P, Gajjala S. A Novel Electrochemical Biosensor Based on Hematite (α-Fe2O3) Flowerlike Nanostructures for Sensitive Determination of Formaldehyde Adulteration in Fruit Juices. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Hossain MB, Rana MM, Abdulrazak LF, Mitra S, Rahman M. Graphene-MoS 2 with TiO 2-SiO 2 layers based surface plasmon resonance biosensor: Numerical development for formalin detection. Biochem Biophys Rep 2019; 18:100639. [PMID: 31016249 PMCID: PMC6475660 DOI: 10.1016/j.bbrep.2019.100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/10/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022] Open
Abstract
In this article, numerically a surface plasmon resonance (SPR) biosensor is developed based on Graphene-MOS2with TiO2—SiO2 hybrid structure for the detection of formalin. Based on attenuated total reflection (ATR) method, we used angular interrogation technique to sense the presence the formalin by observing the change of “minimum reflectance with respect to SPR angle” and “maximum transmittance with respect to surface plasmon resonance frequency (SPRF)”. Here, we used Chitosan as probe analyte to perform chemical reaction with formalin (formaldehyde) which is consider as target analyte. Simulation results show a negligible variation of SPRF and SPR angle for improper sensing of formalin that confirms absence of formalin whereas for proper sensing is considerably countable that confirms the presence of formalin. Thereafter, a comparison of sensitivity for different sensor structure is made. It is observed that the sensitivity without TiO2, SiO2, MoS2 and Graphene (conventional structure) is very poor and 73.67% whereas the sensitivity with graphene but without TiO2, SiO2 and MoS2 layers is 74.67% consistently better than the conventional structure. This is due to the electron loss of graphene, which is accompanying with the imaginary dielectric constant. Furthermore, the sensitivity without TiO2, SiO2 and graphene but with MoS2 layer is 79.167%. After more if both graphene and MoS2 are used and TiO2 and SiO2 layers are not used then sensitivity improves to 80.5%. This greater than before performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. Further again, if TiO2—SiO2 composite layer is used with the Graphene-MoS2 then the sensitivity enhances from 80.5% to 82.5%. Finally, the sensitivity for the proposed structure has been carried out, and result is 82.83%, the highest value among all the previous structures to integrate the advantages of graphene, MoS2, TiO2 and SiO2.
Collapse
Affiliation(s)
- Md Biplob Hossain
- Dept. of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Masud Rana
- Dept. of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | | | - Saikat Mitra
- Dept. of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Mostafizur Rahman
- Dept. of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| |
Collapse
|
18
|
Kundu M, Bhardwaj H, Pandey MK, Krishnan P, Kotnala RK, Sumana G. Development of electrochemical biosensor based on CNT-Fe 3O 4 nanocomposite to determine formaldehyde adulteration in orange juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:1829-1840. [PMID: 30996419 PMCID: PMC6443716 DOI: 10.1007/s13197-019-03635-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/21/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
An electrochemical biosensor was developed to determine formaldehyde (HCHO) adulteration commonly found in food. The current responses of various electrodes based on multiwalled carbon nanotubes (CNTs) and synthesized nanocomposite (CNT-Fe3O4) were measured using cyclic voltammetry. The nanocomposite based biosensor shows comparatively high sensitivity (527 µA mg/L-1 cm-2), low detection limit (0.05 mg/L) in linear detection range 0.05-0.5 mg/L for formaldehyde detection using formaldehyde dehydrogenase (FDH) enzyme. In real sample analysis, the low obtained RSD values (less than 1.79) and good recovery rates (more than 90%) signify an efficient and precise sensor for the selective quantification of formaldehyde in orange juice. The developed biosensor has future implications for determining formaldehyde adulteration in citrus fruit juices and other liquid foods in agri-food chain to further resolve global food safety concerns, control unethical business practices of adulteration and reduce the widespread food borne illness outbreaks.
Collapse
Affiliation(s)
- Monika Kundu
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
- AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
- AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Manoj Kumar Pandey
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Prameela Krishnan
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - R. K. Kotnala
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
- AcSIR-CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| |
Collapse
|
19
|
Determination of Formaldehyde by HPLC with Stable Precolumn Derivatization in Egyptian Dairy Products. Int J Anal Chem 2018; 2018:2757941. [PMID: 30532782 PMCID: PMC6250041 DOI: 10.1155/2018/2757941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde is one of the most dangerous chemical compounds affecting the human health; exposure to it from food may occur naturally or by intentional addition. In this study a high performance liquid chromatography method for determination of formaldehyde in dairy products was described. The dairy samples were reacted and extracted with a warmed organic solvent in the presence of derivatizing agent 2,4-dinitrophenylhydrazine (DNPH) and formaldehyde; the mixture was centrifuged and followed by diode array detection. The method is validated and gives average recovery of formaldehyde at the three different levels 0.1, 5.0, and 10.0 mg/kg varied between 89% and 96%. The method is linear from the limit of quantification 0.1 mg/kg up to 10 mg/kg levels. This method is intended for formaldehyde analyses in dairy products simply with stable derivatization, minimum residue loss, excellent recovery, and accurate results with a sensitive limit of detection 0.01 mg/kg. 90 dairy samples from milk, cheese, and yogurt were investigated from seven Egyptian governorates and all samples were free from formaldehyde.
Collapse
|
20
|
Li J, Wang M, Liu Q, Zhang Y, Peng Z. Validation of UPLC method on the determination of formaldehyde in smoked meat products. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1479714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Junke Li
- College of Food Engineering, LuDong University, Yantai, China
| | - Min Wang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Qiyi Liu
- College of Food Engineering, LuDong University, Yantai, China
| | - Yawei Zhang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Zengqi Peng
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
21
|
Physicochemical Characterization of Biofluid Metabolites from Liquid Residual of Tuna Fish (Euthynnus affinis) throughout Refrigerated Storage Condition. J FOOD QUALITY 2017. [DOI: 10.1155/2017/4189638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cold storage condition and use of chemical treatment to preserve the fish appearance sometimes cause difficulties to the consumers to estimate the freshness of fish in the market. However, during fish deterioration, some compound is released or formed due to microbial and biochemical process. Identification of released compound during fish spoilage is a crucial step in understanding the degree of spoilage. This study characterizes the physicochemical changes of metabolites biofluids from liquid residual of tuna fish (Euthynnus affinis) during refrigerated storage condition. Tuna fish were kept in ice at 0°C and stored in cold room (~4°C) for seven days in order to study the changes in fish freshness and loss of quality through the storage period. Liquid residual of fish was collected at 0, 1, 2, 3, 4, 5, 6, and 7 days of storage. LC-MS/MS analysis was carried out to determine the possible dominant compound which was later identified as creatine and phenylalanine. Quantification of creatine and phenylalanine using HPLC with UV detector found that creatine and phenylalanine increased significantly up to day 4 and day 5 upon storage time for creatine and phenylalanine, respectively (p<0.05). The liquid residual pH increased from 6.5 on day 0 to 7.5 on day 7 (p<0.05). Changes in chemical compounds were supported with physical analysis on gills colour of spoilage fish. L⁎ and a⁎ values decreased with storage time from 41.08 to 24.76 and 18.34 to 10.40, respectively, while b⁎ value increased from -3.80 to -0.46 (p<0.05). The finding of biofluid derived compounds was found as useful and alternative indicators of fish freshness in later study on the development of optical biosensor.
Collapse
|