1
|
Pali M, Jagannath B, Lin K, Sankhala D, Upasham S, Muthukumar S, Prasad S. Tracking metabolic responses based on macronutrient consumption: A comprehensive study to continuously monitor and quantify dual markers (cortisol and glucose) in human sweat using WATCH sensor. Bioeng Transl Med 2021; 6:e10241. [PMID: 34589609 PMCID: PMC8459601 DOI: 10.1002/btm2.10241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Wearable Awareness Through Continuous Hidrosis (WATCH) sensor is a sweat based monitoring platform that tracks cortisol and glucose for the purpose of understanding metabolic responses related to macronutrient consumption. In this research article, we have demonstrated the ability of tracking these two biomarkers in passive human sweat over a workday period (8 h) for 10 human subjects in conjunction with their macronutrient consumption. The validation of the WATCH sensor performance was carried out via standard reference methods such as Luminex and ELISA This is a first demonstration of a passive sweat sensing technology that can detect interrelated dual metabolites, cortisol, and glucose, on a single sensing platform. The significance of detecting the two biomarkers simultaneously is that capturing the body's metabolic and endocrinal responses to dietary triggers can lead to improved lifestyle management. For sweat cortisol, we achieved a detection limit of 1 ng/ml (range ∼1-12.5 ng/ml) with Pearson's "r" of 0.897 in reference studies and 0.868 in WATCH studies. Similarly, for sweat glucose, we achieved a detection limit of 1 mg/dl (range ∼ 1-11 mg/dl) with Pearson's "r" of 0.968 in reference studies and 0.947 in WATCH studies, respectively. The statistical robustness of the WATCH sensor was established through the Bland-Altman analysis, whereby the sweat cortisol and sweat glucose levels are comparable to the standard reference method. The probability distribution (t-test), power analysis (power 0.82-0.87), α = 0.05. Mean absolute relative difference (MARD) outcome of ˷5.10-5.15% further confirmed the statistical robustness of the sweat sensing WATCH device output.
Collapse
Affiliation(s)
- Madhavi Pali
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| | | | - Kai‐Chun Lin
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| | - Devangsingh Sankhala
- Department of Electrical EngineeringThe University of Texas at DallasRichardsonTexasUSA
| | - Sayali Upasham
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| | | | - Shalini Prasad
- Department of BioengineeringUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
2
|
Zhumasheva N, Kudreeva L, Kosybayeva D. Molybdenum oxide based sensors. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this review article were considered the works of electrochemical sensors modified with molybdenum oxide. The work of sensors based on molybdenum oxide was systematized, a comparison table was developed, the sensors were classified according to the purpose of use. Methods of molybdenum oxide synthesis used to modify the working electrode in electrochemical sensors were considered. The various methods have been used to synthesize molybdenum oxide, such as a thermal, hydrothermal, electrochemical, electric spark, pulsed laser method, acid condensation, electrophoretic precipitation, pulse potential precipitation. The main parameters of the molybdenum oxide modified sensors, such as the detection limit, linear range, response time, sensitivity, and other parameters were compared. As a result of studies, it was found that molybdenum oxide is selected as a modifying material in electrochemical sensors due to the unique physicochemical properties of molybdenum oxide, in particular because of mechanical strength, electrical conductivity, electro catalytic activity, crystallinity. The features of electrochemical biosensors coated with molybdenum oxide were described for the detection of important compounds in specific samples. Sensors based on molybdenum oxide have been used for detection of glucose, dopamine, ethanol, ascorbic acid, troponin-1, norepinephrine, procalcitonin, L-lactate, bromate, chlorate, E110, tartrazine, hydrochlorothiazide, human epidermal growth factor-2, lithium,sodium,potassium. This paper provides general summarized information about current aspects of research works related to electrochemical sensors based on molybdenum oxide.
Collapse
|
3
|
Non-invasive early detection of failure modes in total hip replacements (THR) via acoustic emission (AE). J Mech Behav Biomed Mater 2021; 118:104484. [PMID: 33773236 DOI: 10.1016/j.jmbbm.2021.104484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/30/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
Total hip replacements (THR) are becoming an common orthopedic surgucal procedure in the United States (332 K/year in 2017) to relieve pain and improve the mobility of those that are affected by osteoarthritis, ankylosing spondylitis, or injury. However, complications like tribocorrosion, or material degradation due to friction and corrosion, may result in THR failure. Unfortunately, few strategies to non-invasively diagnose early-stage complications are reported in literature, leading to implant complications being detected after irreversible damage. Therefore, the main objective of this study proposes the utilization of acoustic emission (AE) to continuously monitor implant materials, CoCrMo and Ti6Al4V, and identify degradations formed during cycles of sleeping, standing, and walking by correlating them to potential and friction coefficient behavior. AE activity detected from the study correlates with the friction coefficient and open-circuit potential observed during recreated in-vitro standing, walking, and sleeping cycles. It was found that the absolute energy level obtained from AE increased as the friction coefficient increased, potential decreased, and wear volume loss increased. Through the results, higher friction coefficient and AE activity were observed in Ti6Al4V alloys while there was also a significant drop in potential, indicating increased tribocorrosion activity. Therefore, AE can be utilized to predict material degradations as a non-invasive method based on the severity of abnormality of the absolute energy and hits emitted. The correlation between potential, friction coefficient, and AE activity was further confirmed through profilometry which showed more material degradation in Ti6Al4V than CoCrMo. Through these evaluations, it was demonstrated that AE could be utilized to identify the deformations and failure modes of implant materials caused by tribocorrosion.
Collapse
|
4
|
Xie P, Song N, Shen W, Allen M, Javanmard M. A ten-minute, single step, label-free, sample-to-answer assay for qualitative detection of cytokines in serum at femtomolar levels. Biomed Microdevices 2020; 22:73. [PMID: 33037941 DOI: 10.1007/s10544-020-00525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Label-free electronic affinity based immuno-sensing is an attractive candidate as a platform technology for analyzing biomarkers due to the ease of miniaturization and minimal use of reagents. Electronic based sensing approaches, however, have lagged behind their optical counterparts in terms of detection limit, selectivity, and reliability. Also, the matrix dependent nature of electronic sensing modalities makes difficult the analysis of biomarkers in high salt concentration samples such as serum due to charge screening. We present a novel sensing platform, the micro-well sensor, that works by functionalizing nanoscale volume wells with antibodies and monitoring the impedance change inside the wells due binding of target protein. This detection modality is advantageous to many label-free electronic sensors in that signal power scales with increase in salt concentration, thus improving the sensitivity of the platform. We demonstrate rapid label-free qualitative detection of cytokines within ten minutes at femtoMolar concentrations and a dynamic range of 3 orders of magnitude in serum samples. We describe the design, fabrication, and characterization of the micro-well sensor in serum samples using inflammatory protein biomarkers.
Collapse
Affiliation(s)
| | - Naixin Song
- University of Pennsylvania, Philadelphia, PA, USA
| | - Wen Shen
- University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Allen
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
5
|
Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104857] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Synthesis of fluorescent molybdenum nanoclusters at ambient temperature and their application in biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1-11. [DOI: 10.1016/j.msec.2019.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 02/03/2023]
|
7
|
Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2019; 50:212-225. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Chemistry, Arts & Sciences Faculty, Hitit University, Corum, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
9
|
Xu M, Yadavalli VK. Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites. ACS Sens 2019; 4:1040-1047. [PMID: 30957494 DOI: 10.1021/acssensors.9b00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To expand the applications of flexible biosensors in point-of-care healthcare applications beyond monitoring of biophysical parameters, it is important to devise strategies for the detection of various proteins and biomarkers. Here, we demonstrate a flexible, fully organic, biodegradable, label-free impedimetric biosensor for the critical biomarker, vascular endothelial growth factor (VEGF). This biosensor was constructed by photolithographically patterning a conducting ink consisting of a photoreactive silk sericin coupled with a conducting polymer. These functional electrodes are printed on flexible fibroin substrates that are controllably thick and can be free-standing, or conform to soft surfaces. Detection was accomplished via the antibody to VEGF which was immobilized within the conducting matrix. The results indicated that the developed flexible biosensor was highly sensitive and selective to the target protein, even in challenging biofluids such as human serum. The biosensors themselves are biocompatible and degradable. Through this work, the developed flexible biosensor based on a simple and label-free strategy can find practical applications in the monitoring of wound healing or early disease diagnosis.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
10
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
11
|
Fully electronic urine dipstick probe for combinatorial detection of inflammatory biomarkers. Future Sci OA 2018; 4:FSO301. [PMID: 29796304 PMCID: PMC5961415 DOI: 10.4155/fsoa-2017-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022] Open
Abstract
Aim An electrochemical urine dipstick probe biosensor has been demonstrated using molybdenum electrodes on nanoporous polyamide substrate for the quantitative detection of two inflammatory protein biomarkers, CRP and IL-6. Materials & methods The electrode interface was characterized using ζ-potential and Fourier transform infrared spectroscopy. Detection of biomarkers was demonstrated by measuring impedance changes associated with the dose concentrations of the two biomarkers. A proof of feasibility of point-of-care implementation of the biosensor was demonstrated using a portable electronics platform. Results & conclusion Limit of detection of 1 pg/ml was achieved for CRP and IL-6 in human urine and synthetic urine buffers. The developed portable hardware demonstrated close correlation with benchtop equipment results.
Collapse
|
12
|
Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 2017; 98:267-284. [DOI: 10.1016/j.bios.2017.06.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
|
13
|
Kinnamon D, Ghanta R, Lin KC, Muthukumar S, Prasad S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci Rep 2017; 7:13312. [PMID: 29042582 PMCID: PMC5645384 DOI: 10.1038/s41598-017-13684-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/27/2017] [Indexed: 12/26/2022] Open
Abstract
A non-faradaic label-free cortisol biosensor was demonstrated using MoS2 nanosheets integrated into a nanoporous flexible electrode system. Low volume (1–5 μL) sensing was achieved through use of a novel sensor stack design comprised of vertically aligned metal electrodes confining semi-conductive MoS2 nanosheets. The MoS2 nanosheets were surface functionalized with cortisol antibodies towards developing an affinity biosensor specific to the physiological relevant range of cortisol (8.16 to 141.7 ng/mL) in perspired human sweat. Sensing was achieved by measuring impedance changes associated with cortisol binding along the MoS2 nanosheet interface using electrochemical impedance spectroscopy. The sensor demonstrated a dynamic range from 1–500 ng/mL with a limit of detection of 1 ng/mL. A specificity study was conducted using a metabolite expressed in human sweat, Ethyl Glucuronide. Continuous dosing studies were performed during which the sensor was able to discriminate between four cortisol concentration ranges (0.5, 5, 50, 500 ng/mL) for a 3+ hour duration. Translatability of the sensor was shown with a portable form factor device, demonstrating a comparable dynamic range and limit of detection for the sensor. The device demonstrated a R2 correlation value of 0.998 when comparing measurements to the reported impedance values of the benchtop instrumentation.
Collapse
Affiliation(s)
- David Kinnamon
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Ramesh Ghanta
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
14
|
Kinnamon D, Muthukumar S, Panneer Selvam A, Prasad S. Portable Chronic Alcohol Consumption Monitor in Human Sweat through Square-Wave Voltammetry. SLAS Technol 2017; 23:144-153. [PMID: 28954578 DOI: 10.1177/2472630317733255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic alcohol consumption is a significant financial and physical burden in the United States each year. Alcohol consumption monitors focus on establishing a state of intoxication, not assessing a user's health risks as a function of consumed alcohol. This work demonstrates a biosensor for a chronic alcohol consumption monitor through the electrochemical detection of ethyl glucuronide (EtG) in human sweat using square-wave voltammetry (SWV). A novel affinity assay was demonstrated in which monoclonal antibodies were chemically coabsorbed onto a gold electrode surface in parallel with thiolated charge transfer molecule. Concentration-dependent EtG binding was detected by measuring a reduction in the charge transfer of the sensor, manifesting as a current response during SWV measurement. A companion compact electronic reader was constructed, demonstrating comparable sensitivity to a conventional lab instrument. Both tools demonstrated a limit of detection of 0.1 µg/L and a linear dynamic range of 0.1-100 µg/L corresponding to the physiologically relevant range of EtG expression in human sweat. This device can address the need for a chronic alcohol consumption monitor toward establishing a user's long-term consumption habits to assess the risk of developing specific diseases and conditions associated with regular alcohol consumption, through integration with existing technologies.
Collapse
Affiliation(s)
- David Kinnamon
- 1 Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | | | - Anjan Panneer Selvam
- 1 Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Shalini Prasad
- 1 Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|