1
|
Shirazi Kharazi T, Safaiee R, Nasresfahani S. AlN Nanotube Decorated with Small Tin Oxide Clusters as a Novel CH 4 Sensing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60415-60429. [PMID: 39467665 DOI: 10.1021/acsami.4c10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The success of carbon nanotubes has triggered a great deal of research interest in other one-dimensional nanomaterials with the aim of designing innovative nanostructures with attractive and distinctive attributes for applications in sensing gas molecules and toxic substances. In the present study, first-principles density functional theory calculations were exploited to assess the capability of the small tin oxide cluster (SnxOy)-decorated (6,0)aluminum nitride (AlN) nanotube for detecting methane(CH4) in terms of energetic, structural, and electronic properties. We found that SnxOy clusters were chemisorbed on the surface of the AlN nanotube due to the considerable adsorption energy and the notable charge transfer from the former to the latter. Further calculations demonstrate that the energy band gap and work function of the AlN nanotube were reduced in the presence of additives. Benefiting from the higher affinity of SnxOy toward the CH4 molecule, the Sn3O3-decorated AlN nanotube exhibited the greatest CH4 adsorption energy. The electrical conductivity increased as the energy band gap and effective mass decreased dramatically. Additionally, the type of Sn3O3-decorated AlN nanotube changed from a p-type semiconductor to an n-type one after adsorbing the CH4 molecule. Therefore, the Sn3O3-decorated AlN nanotube endows great promise as a thermopower-based, resistance-based, and Seebeck-effect-based CH4 sensing material.
Collapse
Affiliation(s)
- T Shirazi Kharazi
- Faculty of Advanced Technologies, Shiraz University, Shiraz 71454, Iran
| | - R Safaiee
- Faculty of Advanced Technologies, Shiraz University, Shiraz 71454, Iran
| | - Sh Nasresfahani
- Sh. Nasresfahani, Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
2
|
Suchorska-Woźniak P, Teterycz H. ZnO Hexagonal Nano- and Microplates Modified with Nanomaterials as a Gas-Sensitive Material for DMS Detection-Extended Studies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5690. [PMID: 39275601 PMCID: PMC11398269 DOI: 10.3390/s24175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors' previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere.
Collapse
Affiliation(s)
- Patrycja Suchorska-Woźniak
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Helena Teterycz
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Yang Z, Sun Y, Gao S, Yu Q, Zhao Y, Huo Y, Wan Z, Huang S, Wang Y, Gu X. General Model for Predicting Response of Gas-Sensitive Materials to Target Gas Based on Machine Learning. ACS Sens 2024; 9:2509-2519. [PMID: 38642064 DOI: 10.1021/acssensors.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
Collapse
Affiliation(s)
- Zijiang Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yujiao Sun
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Shasha Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Qiuchen Yu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yizhe Zhao
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Yumeng Huo
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Zixin Wan
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Sheng Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Yanyan Wang
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China
| | - Xiuquan Gu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
4
|
Pervaiz S, Saeed MU, Khan S, Asghar B, Saeed Y, Elansary HO, Bacha AUR. Highly sensitive sensing of CO and HF gases by monolayer CuCl. RSC Adv 2024; 14:16284-16292. [PMID: 38774614 PMCID: PMC11106810 DOI: 10.1039/d4ra01519c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Using a first-principles approach, the adsorption characteristics of CO and HF on a CuCl monolayer (ML) are studied with Grimme-scheme DFT-D2 for accurate description of the long-range (van der Waals) interactions. According to our study, CO gas molecules undergo chemisorption and HF gas molecules show a physisorption phenomenon on the CuCl monolayer. The adsorption energy for CO is -1.80 eV, which is quite a large negative value compared to that on other previously studied substrates, like InN (-0.223 eV), phosphorene (0.325 eV), Janus Te2Se (-0.171 eV), graphene (P-graphene, -0.12 eV, B-graphene, -0.14 eV, N-graphene, -0.1 eV) and monolayer ZnS (-0.96 eV), as well as pristine hBN (0.21 eV) and Ti-doped hBN (1.66 eV). Meanwhile, for HF, the adsorption energy value is -0.31 eV (greater than that of Ti-doped hBN, 0.27 eV). For CO, the large value of the diffusion energy barrier (DEB = 1.26 eV) during its movement between two optimal sites indicates that clustering can be prevented if many molecules of CO are adsorbed on the CuCl ML. For HF, the value of the DEB (0.082 eV) implies that the adsorption phenomenon may happen quite easily upon the CuCl ML. The transfer of charge according to Bader charge analysis and the variation in the work function depend only on the properties of the elements involved, i.e., their nature, rather than the local binding environment. The work function and band-gap energy variation of the CuCl ML (before and after adsorption) show high sensitivity and selectivity of CO and HF binding with the CuCl monolayer. HF molecules give a more rapid recovery time of 1.09 × 10-7 s compared to that of CO molecules at a room temperature (RT) of 300 K, which indicates that the necessary adsorption and reusability of the CuCl ML for HF can be accomplished effectively at RT. Significant changes in the conductivity are observed due to the CO adsorption at various temperatures, as compared to adsorption of HF, which suggests the possibility of a modification in the conductivity of the CuCl ML.
Collapse
Affiliation(s)
- Shamiala Pervaiz
- Department of Physics, Abbottabad University of Science and Technology Abbottabad KPK Pakistan +(92)-3454041865
| | - M Usman Saeed
- Department of Physics, Abbottabad University of Science and Technology Abbottabad KPK Pakistan +(92)-3454041865
| | - Sehrish Khan
- Department of Physics, Abbottabad University of Science and Technology Abbottabad KPK Pakistan +(92)-3454041865
| | - Bisma Asghar
- Department of Physics, Abbottabad University of Science and Technology Abbottabad KPK Pakistan +(92)-3454041865
| | - Y Saeed
- Department of Physics, Abbottabad University of Science and Technology Abbottabad KPK Pakistan +(92)-3454041865
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University Riyadh 11451 Saudi Arabia
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University Riyadh 11451 Saudi Arabia
| | - A U R Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Shenzhen 518055 P. R. China
| |
Collapse
|
5
|
Panigrahi PK, Chandu B, Puvvada N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS OMEGA 2024; 9:3092-3122. [PMID: 38284032 PMCID: PMC10809240 DOI: 10.1021/acsomega.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.
Collapse
Affiliation(s)
- Pravas Kumar Panigrahi
- Department
of Basic Science, Government College of
Engineering, Kalahandi, Odisha 766003, India
| | - Basavaiah Chandu
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Nagaprasad Puvvada
- Department
of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh522237, India
| |
Collapse
|
6
|
Louis H, Chukwuemeka K, Agwamba EC, Abdullah HY, Pembere AMS. Molecular simulation of Cu, Ag, and Au-decorated Si-doped graphene quantum dots (Si@QD) nanostructured as sensors for SO 2 trapping. J Mol Graph Model 2023; 124:108551. [PMID: 37399776 DOI: 10.1016/j.jmgm.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
In view of the numerous environmental hazards and health challenges linked to sulfur (iv) oxide (SO2), an indirect greenhouse gas, and the resultant need to develop efficient gas nanosensor devices, this research had as its principal focus on the theoretical evaluation of the gas sensing potential of metals: Ag, Au and Cu functionalized silicon-doped quantum dots (Si@QD) for the detection and adsorption of SO2 gas investigated using the first-principles density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2-SVP level of theory. Eight (8) possible adsorption modes: SO2_O_Si@QD, SO2_O_Ag_Si@QD, SO2_O_Au_Si@QD, SO2_O_Cu_Si@QD, SO2_S_Si@QD, SO2_S_Ag_Si@QD, SO2_S_Au_Si@QD, and SO2_S_Cu_Si@QD were considered based on SO2 interactions with the studied materials at the -S and -O sites of the SO2 molecule. The counterpoise correction (BSSE) showed that five of the eight interactions had favorable Ead + BSSE values ranging from -0.31 to -1.98 eV. All the eight interactions were observed to be thermodynamically favorable with ΔG and ΔH ranging from -129.01 to -200.24 kcal/mol and -158.26 to -229.73 kcal/mol respectively. Results from the topology analysis reveal that van der Waals forces occurred the greatest at the gas-sensor interphase while SO2_S_ Cu_Si@QD is predicted to have the highest sensing potency based on the conductivity and recovery time estimations. These results confirm the potential efficient feasibility of real-world device application of the metals (Ag, Au, Cu) functionalized Si-doped QDs.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemistry, Covenant University, Ota, Nigeria
| | - Hewa Y Abdullah
- Physics Education Department, Tishk International University, Erbil, Iraq
| | - Anthony M S Pembere
- Department of Chemical Sciences, Jaramogi Odinga University of Science and Technology, Bondo, Kenya
| |
Collapse
|
7
|
Lagopati N, Valamvanos TF, Proutsou V, Karachalios K, Pippa N, Gatou MA, Vagena IA, Cela S, Pavlatou EA, Gazouli M, Efstathopoulos E. The Role of Nano-Sensors in Breath Analysis for Early and Non-Invasive Disease Diagnosis. CHEMOSENSORS 2023; 11:317. [DOI: 10.3390/chemosensors11060317] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Early-stage, precise disease diagnosis and treatment has been a crucial topic of scientific discussion since time immemorial. When these factors are combined with experience and scientific knowledge, they can benefit not only the patient, but also, by extension, the entire health system. The development of rapidly growing novel technologies allows for accurate diagnosis and treatment of disease. Nanomedicine can contribute to exhaled breath analysis (EBA) for disease diagnosis, providing nanomaterials and improving sensing performance and detection sensitivity. Through EBA, gas-based nano-sensors might be applied for the detection of various essential diseases, since some of their metabolic products are detectable and measurable in the exhaled breath. The design and development of innovative nanomaterial-based sensor devices for the detection of specific biomarkers in breath samples has emerged as a promising research field for the non-invasive accurate diagnosis of several diseases. EBA would be an inexpensive and widely available commercial tool that could also be used as a disease self-test kit. Thus, it could guide patients to the proper specialty, bypassing those expensive tests, resulting, hence, in earlier diagnosis, treatment, and thus a better quality of life. In this review, some of the most prevalent types of sensors used in breath-sample analysis are presented in parallel with the common diseases that might be diagnosed through EBA, highlighting the impact of incorporating new technological achievements in the clinical routine.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Theodoros-Filippos Valamvanos
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Vaia Proutsou
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Konstantinos Karachalios
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragda Cela
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Efstathios Efstathopoulos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| |
Collapse
|
8
|
Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, Sohail M, Khan A, Abdullaev SS, Khan R. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv 2023; 13:13735-13785. [PMID: 37152571 PMCID: PMC10162010 DOI: 10.1039/d3ra01421e] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Nanomaterials and nanoparticles are a burgeoning field of research and a rapidly expanding technology sector in a wide variety of application domains. Nanomaterials have made exponential progress due to their numerous uses in a variety of fields, particularly the advancement of engineering technology. Nanoparticles are divided into various groups based on the size, shape, and structural morphology of their bodies. The 21st century's defining feature of nanoparticles is their application in the design and production of semiconductor devices made of metals, metal oxides, carbon allotropes, and chalcogenides. For the researchers, these materials then opened a new door to a variety of applications, including energy storage, catalysis, and biosensors, as well as devices for conversion and medicinal uses. For chemical and thermal applications, ZnO is one of the most stable n-type semiconducting materials available. It is utilised in a wide range of products, from luminous materials to batteries, supercapacitors, solar cells to biomedical photocatalysis sensors, and it may be found in a number of forms, including pellets, nanoparticles, bulk crystals, and thin films. The distinctive physiochemical characteristics of semiconducting metal oxides are particularly responsible for this. ZnO nanostructures differ depending on the synthesis conditions, growth method, growth process, and substrate type. A number of distinct growth strategies for ZnO nanostructures, including chemical, physical, and biological methods, have been recorded. These nanostructures may be synthesized very simply at very low temperatures. This review focuses on and summarizes recent achievements in fabricating semiconductor devices based on nanostructured materials as 2D materials as well as rapidly developing hybrid structures. Apart from this, challenges and promising prospects in this research field are also discussed.
Collapse
Affiliation(s)
- Basmah H Alshammari
- Department of Chemistry, College of Science, University of Hail Hail 81451 Saudi Arabia
| | - Maha M A Lashin
- Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | | | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
- King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC) Riyadh 11451 Saudi Arabia
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technologyof China Chengdu 611731 P.R. China
| | - Nasir Rahman
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan University Mardan 23200 KP Pakistan
| | - Sherzod Shukhratovich Abdullaev
- Researcher, Faculty of Chemical Engineering, New Uzbekistan University Tashkent Uzbekistan
- Researcher of Scientific Department, Tashkent State Pedagogical University Named After Nizami Tashkent Uzbekistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
- School of Physics and Optoelectronic Engineering, Shenzhen University Nanshan 518000 Shenzhen Guangdong China
| |
Collapse
|
9
|
Chowdhury MAZ, Rice TE, Oehlschlaeger MA. TSMC-Net: Deep-Learning Multigas Classification Using THz Absorption Spectra. ACS Sens 2023; 8:1230-1240. [PMID: 36815833 DOI: 10.1021/acssensors.2c02615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The identification of gas mixture speciation from a complex multicomponent absorption spectrum is a problem in gas sensing that can be addressed using machine-learning approaches. Here, we report on a deep convolutional neural network for multigas classification using terahertz (THz) absorption spectra, THz spectra mixture classifier network or TSMC-Net. TSMC-Net has been developed to identify eight volatile organic compounds in mixtures based on their fingerprint rotational absorption spectra in the 220-330 GHz frequency range. A data set consisting of simulated absorption spectra for randomly generated mixtures, with absorption greater than thresholds representing detectable limits and annotated with multiple labels, was prepared for model development. The supervised multilabel classification problem, i.e., the identification of individual gases in a mixture, is converted to a supervised multiclass classification problem via label powerset conversion. The trained model is validated and tested against simulated spectra for gas mixtures, with and without white Gaussian noise. The trained model exhibits high precision, recall, and accuracy for each pure compound. Class activation maps illustrate the complex decision-making process of the model and highlight relevant frequency regions that are needed to identify unique mixtures. Finally, the model was demonstrated against measured THz absorption spectra for pure species and mixtures, acquired using a microelectronics-based THz absorption spectrometer. The data set generation strategy and deep convolutional neural network approach are generalized and can be extrapolated to other spectroscopy types, frequency ranges, and sensors.
Collapse
Affiliation(s)
- M Arshad Zahangir Chowdhury
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| | - Timothy E Rice
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| | - Matthew A Oehlschlaeger
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| |
Collapse
|
10
|
Ahmed LR, Chuang CH, Lüder J, Yang HW, EL-Mahdy AFM. Direct Metal-Free Synthesis of Uracil- and Pentaazaphenalene-Functionalized Porous Organic Polymers via Quadruple Mannich Cyclization and Their Nucleobase Recognition Activities. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lamiaa Reda Ahmed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Center for Theoretical and computational Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
11
|
Peña A, Aguilera JD, Matatagui D, de la Presa P, Horrillo C, Hernando A, Marín P. Real-Time Monitoring of Breath Biomarkers with A Magnetoelastic Contactless Gas Sensor: A Proof of Concept. BIOSENSORS 2022; 12:871. [PMID: 36291006 PMCID: PMC9599754 DOI: 10.3390/bios12100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In the quest for effective gas sensors for breath analysis, magnetoelastic resonance-based gas sensors (MEGSs) are remarkable candidates. Thanks to their intrinsic contactless operation, they can be used as non-invasive and portable devices. However, traditional monitoring techniques are bound to slow detection, which hinders their application to fast bio-related reactions. Here we present a method for real-time monitoring of the resonance frequency, with a proof of concept for real-time monitoring of gaseous biomarkers based on resonance frequency. This method was validated with a MEGS based on a Metglass 2826 MB microribbon with a polyvinylpyrrolidone (PVP) nanofiber electrospun functionalization. The device provided a low-noise (RMS = 1.7 Hz), fast (<2 min), and highly reproducible response to humidity (Δf = 46−182 Hz for 17−95% RH), ammonia (Δf = 112 Hz for 40 ppm), and acetone (Δf = 44 Hz for 40 ppm). These analytes are highly important in biomedical applications, particularly ammonia and acetone, which are biomarkers related to diseases such as diabetes. Furthermore, the capability of distinguishing between breath and regular air was demonstrated with real breath measurements. The sensor also exhibited strong resistance to benzene, a common gaseous interferent in breath analysis.
Collapse
Affiliation(s)
- Alvaro Peña
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
| | - Juan Diego Aguilera
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
| | - Daniel Matatagui
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Patricia de la Presa
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Carmen Horrillo
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Antonio Hernando
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
- Donostia International Physics Center, 20018 Donostia, Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, 28049 Madrid, Spain
- Departamento de Ingeniería, Universidad de Nebrija, 28015 Madrid, Spain
| | - Pilar Marín
- Instituto de Magnetismo Aplicado (IMA), Universidad Complutense de Madrid-Administrador de Infraestructuras Ferroviarias (UCM-ADIF), 28230 Las Rozas, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
12
|
Chen X, Wreyford R, Nasiri N. Recent Advances in Ethylene Gas Detection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175813. [PMID: 36079195 PMCID: PMC9457196 DOI: 10.3390/ma15175813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 05/24/2023]
Abstract
The real-time detecting and monitoring of ethylene gas molecules could benefit the agricultural, horticultural and healthcare industries. In this regard, we comprehensively review the current state-of-the-art ethylene gas sensors and detecting technologies, covering from preconcentrator-equipped gas chromatographic systems, Fourier transform infrared technology, photonic crystal fiber-enhanced Raman spectroscopy, surface acoustic wave and photoacoustic sensors, printable optically colorimetric sensor arrays to a wide range of nanostructured chemiresistive gas sensors (including the potentiometric and amperometric-type FET-, CNT- and metal oxide-based sensors). The nanofabrication approaches, working conditions and sensing performance of these sensors/technologies are carefully discussed, and a possible roadmap for the development of ethylene detection in the near future is proposed.
Collapse
|
13
|
Hernández-Rodríguez YM, Lopez-Salazar P, Juarez-Diaz G, Paredes-Rubio GR, Peña-Sierra R. Synthesis and Characterization of Nanoporous ZnO Films by Controlling the Zn Sublimation by Using ZnO/Zn Precursor Films. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5509. [PMID: 36013655 PMCID: PMC9412365 DOI: 10.3390/ma15165509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
A reliable process for the formation of nanoporous ZnO films supported on amorphous quartz and (100) silicon substrates via the processing of ZnO/Zn precursor films is reported. The process is based on the sublimation mechanism of Zn implemented in a novel ZnO/Zn precursor film to produce a nanoporous film. A scanning electron microscopy analysis of the nanoporous ZnO films' surfaces revealed the presence of ZnO nano-features with round tips; in contrast, the nanoporous ZnO films supported on (100) Si substrates showed hexagonal nut-like nanostructures. The crystallite size of the nanoporous ZnO films decreased as the sublimation temperature was increased. X-ray photoelectron spectroscopy studies demonstrated that formations of oxygen vacancies were produced during the processing stages (as the main structural lattice defects in the ZnO nanoporous films). The analysis of the photoluminescence response confirmed that the active deep-level centers were also related to the oxygen vacancies generated during the thermal processing of the ZnO/Zn precursor films. Finally, a qualitative mechanism is proposed to explain the formation of nanoporous ZnO films on quartz and crystalline Si substrates. The results suggest that the substrates used have a strong influence on the nanoporous ZnO structures obtained with the Zn-sublimation-controlled process.
Collapse
Affiliation(s)
- Yazmin Mariela Hernández-Rodríguez
- Programa de Doctorado en Nanociencias y Nanotecnología, CINVESTAV-Instituto Politécnico Nacional, Av. IPN 2508, Mexico City 07360, Mexico
| | - Primavera Lopez-Salazar
- Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico
| | | | - Gabriel Romero Paredes-Rubio
- Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido (SEES) CINVESTAV-IPN, Av. IPN 2508, Mexico City 07360, Mexico
| | - Ramón Peña-Sierra
- Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido (SEES) CINVESTAV-IPN, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
14
|
Liu L, Wang Y, Liu Y, Wang S, Li T, Feng S, Qin S, Zhang T. Heteronanostructural metal oxide-based gas microsensors. MICROSYSTEMS & NANOENGINEERING 2022; 8:85. [PMID: 35911378 PMCID: PMC9329395 DOI: 10.1038/s41378-022-00410-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance, portable and miniaturized gas sensors has aroused increasing interest in the fields of environmental monitoring, security, medical diagnosis, and agriculture. Among different detection tools, metal oxide semiconductor (MOS)-based chemiresistive gas sensors are the most popular choice in commercial applications and have the advantages of high stability, low cost, and high sensitivity. One of the most important ways to further enhance the sensor performance is to construct MOS-based nanoscale heterojunctions (heteronanostructural MOSs) from MOS nanomaterials. However, the sensing mechanism of heteronanostructural MOS-based sensors is different from that of single MOS-based gas sensors in that it is fairly complex. The performance of the sensors is influenced by various parameters, including the physical and chemical properties of the sensing materials (e.g., grain size, density of defects, and oxygen vacancies of materials), working temperatures, and device structures. This review introduces several concepts in the design of high-performance gas sensors by analyzing the sensing mechanism of heteronanostructural MOS-based sensors. In addition, the influence of the geometric device structure determined by the interconnection between the sensing materials and the working electrodes is discussed. To systematically investigate the sensing behavior of the sensor, the general sensing mechanism of three typical types of geometric device structures based on different heteronanostructural materials are introduced and discussed in this review. This review will provide guidelines for readers studying the sensing mechanism of gas sensors and designing high-performance gas sensors in the future.
Collapse
Affiliation(s)
- Lin Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Yingyi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Yinhang Liu
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Department of Nano Science and Nano Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu China
| | - Shuqi Wang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Tie Li
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Simin Feng
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
| | - Sujie Qin
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- Nano-X, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui PR China
- Gusu Laboratory of Materials, Suzhou, Jiangsu PR China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, PR China
| |
Collapse
|
15
|
Lightweight Self-Detection and Self-Calibration Strategy for MEMS Gas Sensor Arrays. SENSORS 2022; 22:s22124315. [PMID: 35746097 PMCID: PMC9228328 DOI: 10.3390/s22124315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has high performance of fault detection, isolation, and data recovery. Furthermore, our method has low computation complexity and low storage resource occupation. The board-level verification on CC1350 shows that the average calculation time and running power consumption of the algorithm are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT devices to improve the reliability of gas sensing systems.
Collapse
|
16
|
Wang B, Gu Y, Chen L, Ji L, Zhu H, Sun Q. Gas sensing devices based on two-dimensional materials: a review. NANOTECHNOLOGY 2022; 33:252001. [PMID: 35290973 DOI: 10.1088/1361-6528/ac5df5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Gas sensors have been widely utilized penetrating every aspect of our daily lives, such as medical industry, environmental safety testing, and the food industry. In recent years, two-dimensional (2D) materials have shown promising potential and prominent advantages in gas sensing technology, due to their unique physical and chemical properties. In addition, the ultra-high surface-to-volume ratio and surface activity of the 2D materials with atomic-level thickness enables enhanced absorption and sensitivity. Till now, different gas sensing techniques have been developed to further boost the performance of 2D materials-based gas sensors, such as various surface functionalization and Van der Waals heterojunction formation. In this article, a comprehensive review of advanced gas sensing devices is provided based on 2D materials, focusing on two sensing principles of charge-exchange and surface oxygen ion adsorption. Six types of typical gas sensor devices based on 2D materials are introduced with discussion of latest research progress and future perspectives.
Collapse
Affiliation(s)
- Boran Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi Gu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Li Ji
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Hao Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Qingqing Sun
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
17
|
Fuśnik Ł, Szafraniak B, Paleczek A, Grochala D, Rydosz A. A Review of Gas Measurement Set-Ups. SENSORS 2022; 22:s22072557. [PMID: 35408172 PMCID: PMC9002727 DOI: 10.3390/s22072557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
Measurements of the properties of gas-sensitive materials are a subject of constant research, including continuous developments and improvements of measurement methods and, consequently, measurement set-ups. Preparation of the test set-up is a key aspect of research, and it has a significant impact on the tested sensor. This paper aims to review the current state of the art in the field of gas-sensing measurement and provide overall conclusions of how the different set-ups impact the obtained results.
Collapse
|
18
|
Development of nano-sensor and biosensor as an air pollution detection technique for the foreseeable future. COMPREHENSIVE ANALYTICAL CHEMISTRY 2022; 99:163-188. [PMCID: PMC9906420 DOI: 10.1016/bs.coac.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nowadays, the air quality control has become an important issue, especially after “COVID-19.” The air respiratory viruses cause a severe infection. The detection of airborne viruses and air contaminants is an urgent trend. The quality of a certain environment is based on the analysis of its indoor air. Thus, the design and production of rapid sensors for the control purposes are an urgent goal. This chapter should contribute to increase the scientific knowledge in the environmental fields, everyone that is exposed to air pollutants, occupational health services, medicine clinics, and work inspectors. This chapter aims also to support the readers with details about the relation between nanotechnology and air pollution control, and to link these issues to the eco-friendly nanomaterial production. The chapter provides an overview of information on diverse types of nanosensors and nanobiosensors, followed by a brief section on eco-friendly development of biomass-based nanomaterials.
Collapse
|
19
|
Abstract
As an emerging class of hybrid nanoporous materials, metal-organic frameworks (MOFs) have attracted significant attention as promising multifunctional building blocks for the development of highly sensitive and selective gas sensors due to their unique properties, such as large surface area, highly diversified structures, functionalizable sites and specific adsorption affinities. Here, we provide a review of recent advances in the design and fabrication of MOF nanomaterials for the low-temperature detection of different gases for air quality and environmental monitoring applications. The impact of key structural parameters including surface morphologies, metal nodes, organic linkers and functional groups on the sensing performance of state-of-the-art sensing technologies are discussed. This review is concluded by summarising achievements and current challenges, providing a future perspective for the development of the next generation of MOF-based nanostructured materials for low-temperature detection of gas molecules in real-world environments.
Collapse
|
20
|
Barrera G, Celegato F, Cialone M, Coïsson M, Rizzi P, Tiberto P. Effect of the Substrate Crystallinity on Morphological and Magnetic Properties of Fe 70Pd 30 Nanoparticles Obtained by the Solid-State Dewetting. SENSORS (BASEL, SWITZERLAND) 2021; 21:7420. [PMID: 34770724 PMCID: PMC8588453 DOI: 10.3390/s21217420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and "top-down" nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150-300 nm and 150-200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film.
Collapse
Affiliation(s)
- Gabriele Barrera
- Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (F.C.); (M.C.); (P.T.)
| | - Federica Celegato
- Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (F.C.); (M.C.); (P.T.)
| | - Matteo Cialone
- CNR SPIN Genova, c.so F. M. Perrone 24, I-16152 Genova, Italy;
| | - Marco Coïsson
- Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (F.C.); (M.C.); (P.T.)
| | - Paola Rizzi
- Chemistry Department and NIS, Università di Torino, Via Pietro Giuria 7, I-10125 Torino, Italy;
| | - Paola Tiberto
- Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, I-10135 Torino, Italy; (F.C.); (M.C.); (P.T.)
| |
Collapse
|
21
|
Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1927. [PMID: 34443755 PMCID: PMC8398721 DOI: 10.3390/nano11081927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.
Collapse
Affiliation(s)
- Xiaohu Chen
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Michelle Leishman
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Darren Bagnall
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
22
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
23
|
Yuan Y, Wu H, Bu X, Wu Q, Wang X, Han C, Li X, Wang X, Liu W. Improving Ammonia Detecting Performance of Polyaniline Decorated rGO Composite Membrane with GO Doping. MATERIALS 2021; 14:ma14112829. [PMID: 34070649 PMCID: PMC8198450 DOI: 10.3390/ma14112829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Gas-sensing performance of graphene-based material has been investigated widely in recent years. Polyaniline (PANI) has been reported as an effective method to improve ammonia gas sensors’ response. A gas sensor based on a composite of rGO film and protic acid doped polyaniline (PA-PANI) with GO doping is reported in this work. GO mainly provides NH3 adsorption sites, and PA-PANI is responsible for charge transfer during the gas-sensing response process. The experimental results indicate that the NH3 gas response of rGO is enhanced significantly by decorating with PA-PANI. Moreover, a small amount of GO mixed with PA-PANI is beneficial to increase the gas response, which showed an improvement of 262.5% at 25 ppm comparing to no GO mixing in PA-PANI.
Collapse
Affiliation(s)
- Yubin Yuan
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Haiyang Wu
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Xiangrui Bu
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Qiang Wu
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Xuming Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Chuanyu Han
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Xin Li
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
- Guangdong Shunde Xi’an Jiaotong University Academy, Xi’an Jiaotong University, NO.3 Deshengdong Road, Daliang, Shunde District, Foshan 528300, China
| | - Xiaoli Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
- School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Weihua Liu
- School of Microelectronics, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Y.); (H.W.); (X.B.); (Q.W.); (X.W.); (C.H.); (X.L.); (X.W.)
- The Key Lab of Micro-nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
- Research Institute of Xi’an Jiaotong University, Hangzhou 311215, China
- Correspondence: ; Tel.: +86-29-8266-3343
| |
Collapse
|
24
|
A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors. BIOSENSORS-BASEL 2021; 11:bios11040121. [PMID: 33920811 PMCID: PMC8071106 DOI: 10.3390/bios11040121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Theoretical study and software simulation on the sensitivity of silicon nanowires (SiNWs) field effect transistor (FET) sensors in terms of surface-to-volume ratio, depletion ratio, surface state and lattice quality are carried out. Generally, SiNWs-FET sensors with triangular cross-sections are more sensitive than sensors with circular or square cross-sections. Two main reasons are discussed in this article. Firstly, SiNWs-FET sensors with triangular cross-sections have the largest surface-to-volume ratio and depletion ratio which significantly enhance the sensors’ sensitivity. Secondly, the manufacturing processes of the electron beam lithography (EBL) and chemical vapor deposition (CVD) methods seriously affect the surface state and lattice quality, which eventually influence SiNWs-FET sensors’ sensitivity. In contrast, wet etching and thermal oxidation (WETO) create fewer surface defects and higher quality lattices. Furthermore, the software simulation confirms that SiNWs-FET sensors with triangular cross-sections have better sensitivity than the other two types of SiNWs-FET sensors under the same conditions, consistent with the theoretical analysis. The article fully proved that SiNWs-FET sensors fabricated by the WETO method produced the best sensitivity and it will be widely used in the future.
Collapse
|
25
|
Morphology of Ga 2O 3 Nanowires and Their Sensitivity to Volatile Organic Compounds. NANOMATERIALS 2021; 11:nano11020456. [PMID: 33670141 PMCID: PMC7916880 DOI: 10.3390/nano11020456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Gas sensitive structures made of nanowires exhibit extremally large specific surface area, and a great number of chemically active centres that can react with the ambient atmosphere. This makes the use of nanomaterials promising for super sensitive gas sensor applications. Monoclinic β-Ga2O3 nanowires (NWs) were synthesized from metallic gallium at atmospheric pressure in the presence of nitrogen and water vapor. The nanowires were grown directly on interdigitated gold electrodes screen printed on Al2O3 substrates, which constituted the gas sensor structure. The observations made with transmission electron microscope (TEM) have shown that the nanowires are monocrystalline and their diameters vary from 80 to 300 nm with the average value of approximately 170 nm. Au droplets were found to be anchored at the tips of the nanowires which may indicate that the nanowires followed the Vapor-Liquid-Solid (VLS) mechanism of growth. The conductivity of β-Ga2O3 NWs increases in the presence of volatile organic compounds (VOC) even in the temperature below 600 °C. The gas sensor based on the synthesized β-Ga2O3 NWs shows peak sensitivity to 100 ppm of ethanol of 75.1 at 760 °C, while peak sensitivity to 100 ppm of acetone is 27.5 at 690 °C.
Collapse
|
26
|
Semiconducting Metal Oxides: SrTiO3, BaTiO3 and BaSrTiO3 in Gas-Sensing Applications: A Review. COATINGS 2021. [DOI: 10.3390/coatings11020185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, a broad overview in the field of strontium titanate (ST, SrTiO3)-, barium titanate (BT, BaTiO3)- and barium strontium titanate (BST, BaSrTiO3)-based gas sensors is presented and discussed. The above-mentioned materials are characterized by a perovskite structure with long-term stability and therefore are very promising materials for commercial gas-sensing applications. Within the last 20 years, the number of papers where ST, BT and BST materials were tested as gas-sensitive materials has ten times increased and therefore an actual review about them in this field has been expected by readers, who are researchers involved in gas-sensing applications and novel materials investigations, as well as industry research and development center members, who are constantly searching for gas-sensing materials exhibiting high 3S parameters (sensitivity, selectivity and stability) that can be adapted for commercial realizations. Finally, the NO2-sensing characteristics of the BST-based gas sensors deposited by the authors with the utilization of magnetron sputtering technology are presented.
Collapse
|
27
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
28
|
Kalidoss R, Surya VJ, Sivalingam Y. Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201125203955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
The scientific and clinical interest of breath analysis for non-invasive disease diagnosis has been focused by the scientific community over the past decade. This was due to the exhalation of prominent volatile organic compounds (VOCs) corresponding to the metabolic activities in the body and their concentration variation. To identify these biomarkers, various analytical techniques have been used in the past and the threshold concentration was established between a healthy and diseased state. Subsequently, various nanomaterials-based gas sensors were explored for their demand in quantifying these biomarkers for real-time, low cost and portable breathalyzers along with the essential sensor performances.
Methods::
We focus on the classification of graphene derivatives and their composites’ gas sensing efficiency for the application in the development of breathalyzers. The review begins with the feasibility of the application of nanomaterial gas sensors for healthcare applications. Then, we systematically report the gas sensing performance of various graphene derivatives/semiconductor metal oxides (SMO) binary nanocomposites and their optimizing strategies in selective detection of biomarkers specific to diseases. Finally, we provide insights on the challenges, opportunity and future research directions for the development of breathalyzers using other graphene derivatives/SMO binary nanocomposites.
Results::
On the basis of these analyses, graphene and its derivatives/metal oxides based binary nanocomposites have been a choice for gas sensing material owing to their high electrical conductivity and extraordinary thickness-dependent physicochemical properties. Moreover, the presence of oxygen vacancies in SMO does not only alter the conductivity but also accelerates the carrier transport rate and influence the adsorption behavior of target analyte on the sensing materials. Hence researchers are exploring the search of ultrathin graphene and metal oxide counterpart for high sensing performances.
Conclusion::
Their impressive properties compared to their bulk counterpart have been uncovered towards sensitive and selective detection of biomarkers for its use in portable breathalyzers.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research, Selaiyur, 600073, Tamil Nadu,, India
| | - Velappa Jayaraman Surya
- Department of Physics and Nanotechnology, Novel, Advanced, and Applied Materials (NAAM) Laboratory, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu,, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, Laboratory for Sensors, Energy and Electronic Devices (Lab SEED), SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203,, India
| |
Collapse
|
29
|
Ammonia Gas Sensors: Comparison of Solid-State and Optical Methods. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High precision and fast measurement of gas concentrations is important for both understanding and monitoring various phenomena, from industrial and environmental to medical and scientific applications. This article deals with the recent progress in ammonia detection using in-situ solid-state and optical methods. Due to the continuous progress in material engineering and optoelectronic technologies, these methods are among the most perceptive because of their advantages in a specific application. We present the basics of each technique, their performance limits, and the possibility of further development. The practical implementations of representative examples are described in detail. Finally, we present a performance comparison of selected practical application, accumulating data reported over the preceding decade, and conclude from this comparison.
Collapse
|
30
|
Korotcenkov G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1392. [PMID: 32708967 PMCID: PMC7407990 DOI: 10.3390/nano10071392] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
This article discusses the main uses of 1D and 2D nanomaterials in the development of conductometric gas sensors based on metal oxides. It is shown that, along with the advantages of these materials, which can improve the parameters of gas sensors, there are a number of disadvantages that significantly limit their use in the development of devices designed for the sensor market.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
31
|
Hamid A, Khan M, Hayat A, Raza J, Zada A, Ullah A, Raziq F, Li T, Hussain F. Probing the physio-chemical appraisal of green synthesized PbO nanoparticles in PbO-PVC nanocomposite polymer membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118303. [PMID: 32276226 DOI: 10.1016/j.saa.2020.118303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Different plants can be used to prepare nanoparticles. This is termed as green technology. It is one of the best ecofriendly and low-cost method for the preparation of nanoparticles which has no harmful effects. PbO nanoparticles were prepared by green method using leaf extract of Datura Sternum plants. The preparation of Lead oxide was confirmed by color change from colorless to yellowish brown. UV-Visible peak obtained at 250 nm and XRD study clarified the formation of PbO NPs. These PbO nanoparticles were then applied for the preparation of Nano Composite Polymer Membranes (nCPMs). PbO-PVC nCPMs were prepared based on polyvinyl chloride (PVC) polymer and PbO filler with the help of solution casting method, using cyclohexanone as a solvent. Different percentage (5-35%) of filler was used. The physiochemical parameters studied were viscosity, water uptake (WU), perpendicular swelling (DT) in deionized water, density, porosity (ε), morphology, ion adsorption capacity (IAC) and electrical conductivity (σ). The values of all these parameters except viscosity and conductivity were increased on increasing filler percentage. Viscosity of the nCPMs solution was decreased from 171 to 46.21. The conductivity of nCPMs was first increased upto 25% filler and then decreased. The deformation in PVC structure was increased on enhancing PbO amount. The values of Density, porosity, water uptake, DT and IAC were found in range 1.15-5.02, 0.50-0.87, 72.01-141.30, 0.012-0.11, and 3.13 × 107-8.60 × 107 respectively.
Collapse
Affiliation(s)
- Abdul Hamid
- Department of Chemistry, University of Okara, Renala Khurd, Okara, Punjab, Pakistan
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Renala Khurd, Okara, Punjab, Pakistan; School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072, PR China.
| | - Asif Hayat
- School of Chemistry, Fuzhou University, PR China.
| | - Junaid Raza
- Department of Chemistry, University of Okara, Renala Khurd, Okara, Punjab, Pakistan
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Mardan 23200, K.P.K, Pakistan
| | - Azeem Ullah
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072, PR China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072, PR China
| | - Fakhar Hussain
- Department of Chemistry, University of Okara, Renala Khurd, Okara, Punjab, Pakistan
| |
Collapse
|
32
|
Molavi R, Safaiee R, Sheikhi MH. Oxygen adsorption properties of small cobalt oxide clusters: application feasibility as oxygen gas sensors. Phys Chem Chem Phys 2020; 22:14889-14899. [DOI: 10.1039/d0cp01951h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations show chemical exothermic oxygen adsorption on cobalt oxide clusters with charge transfer from the clusters to oxygen.
Collapse
Affiliation(s)
- R. Molavi
- Department of Engineering
- School of Electrical and Computer Engineering
- Shiraz University
- Shiraz
- Iran
| | - R. Safaiee
- Faculty of Advanced Technologies
- Shiraz University
- Shiraz
- Iran
| | - M. H. Sheikhi
- Department of Engineering
- School of Electrical and Computer Engineering
- Shiraz University
- Shiraz
- Iran
| |
Collapse
|
33
|
Kumar V, Vikrant K, Kim KH. Use of graphene-based structures as platforms for the trace-level detection of gaseous formaldehyde and insights into their superior sensing potentials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Jin SE, Jin HE. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019; 11:E575. [PMID: 31689932 PMCID: PMC6921052 DOI: 10.3390/pharmaceutics11110575] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical characterization is required to identify the biological and toxicological effects of ZnO nanoparticles. These nanoparticles have variable morphologies and can be molded into three-dimensional structures to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid in wound healing and can be used for imaging tools and sensors. In this review, we discuss the synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate three-dimensional structures, and the various biomedical applications of ZnO nanoparticles.
Collapse
Affiliation(s)
- Su-Eon Jin
- College of Pharmacy, Yonsei University, Incheon 21983, Korea.
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea.
| |
Collapse
|