1
|
Parmigiani M, Schifano V, Taglietti A, Galinetto P, Albini B. Increasing gold nanostars SERS response with silver shells: a surface-based seed-growth approach. NANOTECHNOLOGY 2024; 35:195603. [PMID: 38306966 DOI: 10.1088/1361-6528/ad25c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
A straightforward method to prepare surface enhanced Raman spectroscopy (SERS) chips containing a monolayer of silver coated gold nanostars (GNS@Ag) grafted on a glass surface is introduced. The synthetic approach is based on a seed growth method performed directly on surface, using GNS as seeds, and involving a green pathway, which only uses silver nitate, ascorbic acid and water, to grow the silver shell. The preparation was optimized to maximize signals obtaining a SERS response of one order of magnitude greater than that from the original GNS based chips, offering in the meantime good homogeneity and acceptable reproducibility. The proposed GNS@Ag SERS chips are able to detect pesticide thiram down to 20 ppb.
Collapse
Affiliation(s)
- Miriam Parmigiani
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Veronica Schifano
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Angelo Taglietti
- Dipartimento di Chimica, Sezione di Chimica Generale, Università di Pavia, viale Taramelli, 12-I-27100 Pavia-Italy
| | - Pietro Galinetto
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| | - Benedetta Albini
- Dipartimento di Fisica, Università di Pavia, Via Bassi 6,-I-27100 Pavia-Italy
| |
Collapse
|
2
|
Muslimov AE, Gadzhiev MK, Kanevsky VM. Influence of Plasma Treatment Parameters on the Structural-Phase Composition, Hardness, Moisture-Resistance, and Raman-Enhancement Properties of Nitrogen-Containing Titanium Dioxide. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8514. [PMID: 36500006 PMCID: PMC9736553 DOI: 10.3390/ma15238514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The paper shows, for the first time, the prospects of treatment with a quasi-equilibrium low-temperature nitrogen plasma in an open atmosphere for the formation of super-hard, super-hydrophobic TiN/TiO2 composite coatings with pronounced Raman-enhancement properties. X-ray diffractometry (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy, as well as the analysis of hardness and moisture-resistance properties, are used as analytical research methods. During plasma treatment of titanium films on sapphire with a mass average temperature of 4-6 kK, an X-ray amorphous hydrophilic titanium oxide film with a low nitrogen content is formed. The nitrogen content in titanium oxide films increases with increasing treatment temperature up to 6-7 kK. In this case, an X-ray amorphous hydrophobic film is formed. With a further increase in temperature to 7-10 kK, a TiN/TiO2 composite structure based on polycrystalline rutile is formed with increased hydrophobicity and pronounced Raman enhancement properties due to the effective excitation of surface plasmon polaritons. The presence of the crystalline phase increases the dephasing time, which determines the quality of the resonance and the achievable amplification of the electromagnetic field near the TiN inclusions. All treated films on sapphire have a super-hardness above 25 GPa (Vickers hardness test) due to high grain size, the presence of nitrogen-containing inclusions concentrated along grain boundaries, and compressive stresses.
Collapse
Affiliation(s)
- Arsen E. Muslimov
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Shubnikov Institute of Crystallography, Moscow 119333, Russia
| | - Makhach Kh. Gadzhiev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - Vladimir M. Kanevsky
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Shubnikov Institute of Crystallography, Moscow 119333, Russia
| |
Collapse
|
3
|
ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based biosensing: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Insight on Mercapto-Coumarins: Synthesis and Reactivity. Molecules 2022; 27:2150. [PMID: 35408548 PMCID: PMC9000435 DOI: 10.3390/molecules27072150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Mercapto (or sulfanyl)-coumarins are heterocycles of great interest in the development of valuable active structures in material and biological domains. They represent a highly exploitable class of compounds that open many possibilities for further chemical transformations. The present review aims to draw focus toward the synthetic applicability of various forms of mercapto-coumarins and their representations in pharmaceuticals and industries. This work covers the literature issued from 1970 to 2021.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moleculaire (L.2.C.M.), Universite de Lorraine, 57050 Metz, France
| |
Collapse
|
5
|
Chauhan N, Saxena K, Tikadar M, Jain U. Recent advances in the design of biosensors based on novel nanomaterials: An insight. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| |
Collapse
|
6
|
Sacco A, Portesi C, Giovannozzi AM, Rossi AM. Graphene edge method for three‐dimensional probing of Raman microscopes focal volumes. JOURNAL OF RAMAN SPECTROSCOPY 2021; 52:1671-1684. [DOI: 10.1002/jrs.6187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 09/02/2023]
Abstract
AbstractIn this work, a layer of graphene was used as a standard material for the measurement of the dimensions of Raman microscopes focal volumes of different confocal Raman spectrometers equipped with different objectives and excitation laser wavelengths. This method consists in probing the volume near the focal point of the system by using a flat graphene monolayer sheet with a straight edge. Graphene was selected because of its high Raman cross section and mechanically and chemically stability, allowing fast measurements and easy manipulation. In this paper, a method to employ graphene to accurately and precisely measure the three dimensions of the focal volume of a Raman microscope is presented; scanning along the axial and lateral directions, it is possible to reconstruct the three dimensions of the focal volume. Furthermore, these operations can be combined in a single procedure which allows the measurement of projections of the volume on planes parallel to the optical axis. Knowledge of these parameters enable absolute quantification of Raman‐active molecules and support high‐resolution Raman imaging.
Collapse
Affiliation(s)
- Alessio Sacco
- Quantum Metrology and Nanotechnology Department National Institute for Metrological Research (INRiM) Strada delle Cacce 91 Turin 10135 Italy
| | - Chiara Portesi
- Quantum Metrology and Nanotechnology Department National Institute for Metrological Research (INRiM) Strada delle Cacce 91 Turin 10135 Italy
| | - Andrea Mario Giovannozzi
- Quantum Metrology and Nanotechnology Department National Institute for Metrological Research (INRiM) Strada delle Cacce 91 Turin 10135 Italy
| | - Andrea Mario Rossi
- Quantum Metrology and Nanotechnology Department National Institute for Metrological Research (INRiM) Strada delle Cacce 91 Turin 10135 Italy
| |
Collapse
|
7
|
Xu L, Liu H, Zhou H, Hong M. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection. Talanta 2021; 228:122204. [PMID: 33773724 DOI: 10.1016/j.talanta.2021.122204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
Flexible transparent SERS substrates have aroused great interest as a rapid and in situ detection method for trace chemicals. We demonstrate a one-step and environmentally friendly method to fabricate flexible fluorinated ethylene propylene (FEP) surface plasmon resonance film by femtosecond laser induced plasma assisted ablation (LIPAA) for in situ SERS detection. By tuning laser fluence, the distributions and sizes of silver and gold nanoparticles generated by femtosecond LIPAA are studied. Using a Rhodamine 6G (R6G) Raman probe with a 532 nm laser excitation, the proposed Ag NPs/FEP and Au NPs/FEP substrates show enhancement factors of 5.6 × 107 and 2.4 × 106, respectively, as compared to a bare FEP film without the metallic nanoparticles. The Raman signals show good uniformity and a linear relationship with the concentration of R6G solution. In addition, the detection limit of thiram on an apple for in situ measurement is 0.1 mg/Kg, corresponding to 7.96 ng/cm2. The proposed SERS detection approach has great potential to pave a new way in food safety applications, such as detecting pesticides in harvested fruits.
Collapse
Affiliation(s)
- Lingmao Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore; Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730001, China
| | - Huagang Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Hui Zhou
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730001, China.
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
8
|
Filippin N, Castillo-Seoane J, López-Santos MC, Rojas CT, Ostrikov K, Barranco A, Sánchez-Valencia JR, Borrás A. Plasma-Enabled Amorphous TiO 2 Nanotubes as Hydrophobic Support for Molecular Sensing by SERS. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50721-50733. [PMID: 33112589 DOI: 10.1021/acsami.0c14087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We devise a unique heteronanostructure array to overcome a persistent issue of simultaneously utilizing the surface-enhanced Raman scattering, inexpensive, Earth-abundant materials, large surface areas, and multifunctionality to demonstrate near single-molecule detection. Room-temperature plasma-enhanced chemical vapor deposition and thermal evaporation provide high-density arrays of vertical TiO2 nanotubes decorated with Ag nanoparticles. The role of the TiO2 nanotubes is 3-fold: (i) providing a high surface area for the homogeneous distribution of supported Ag nanoparticles, (ii) increasing the water contact angle to achieve superhydrophobic limits, and (iii) enhancing the Raman signal by synergizing the localized electromagnetic field enhancement (Ag plasmons) and charge transfer chemical enhancement mechanisms (amorphous TiO2) and by increasing the light scattering because of the formation of vertically aligned nanoarchitectures. As a result, we reach a Raman enhancement factor of up to 9.4 × 107, satisfying the key practical device requirements. The enhancement mechanism is optimized through the interplay of the optimum microstructure, nanotube/shell thickness, Ag nanoparticles size distribution, and density. Vertically aligned amorphous TiO2 nanotubes decorated with Ag nanoparticles with a mean diameter of 10-12 nm provide enough sensitivity for near-instant concentration analysis with an ultralow few-molecule detection limit of 10-12 M (Rh6G in water) and the possibility to scale up device fabrication.
Collapse
Affiliation(s)
- Nicolas Filippin
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
| | - Javier Castillo-Seoane
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
| | - M Carmen López-Santos
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
| | - Cristina T Rojas
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
| | - Kostya Ostrikov
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Lindfield, New South Wales 2070, Australia
| | - Angel Barranco
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
| | - Juan R Sánchez-Valencia
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Avenida Reina Mercedes, Seville E-41012, Spain
| | - Ana Borrás
- Nanotechnology on Surfaces and Plasma Group, Materials Science Institute of Seville, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, c/Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|