1
|
Dennison SR, Thakkar T, Kan A, Svirsky MA, Azadpour M, Litovsky RY. A Mixed-Rate Strategy on a Bilaterally-Synchronized Cochlear Implant Processor Offering the Opportunity to Provide Both Speech Understanding and Interaural Time Difference Cues. J Clin Med 2024; 13:1917. [PMID: 38610682 PMCID: PMC11012985 DOI: 10.3390/jcm13071917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background/Objective: Bilaterally implanted cochlear implant (CI) users do not consistently have access to interaural time differences (ITDs). ITDs are crucial for restoring the ability to localize sounds and understand speech in noisy environments. Lack of access to ITDs is partly due to lack of communication between clinical processors across the ears and partly because processors must use relatively high rates of stimulation to encode envelope information. Speech understanding is best at higher stimulation rates, but sensitivity to ITDs in the timing of pulses is best at low stimulation rates. Methods: We implemented a practical "mixed rate" strategy that encodes ITD information using a low stimulation rate on some channels and speech information using high rates on the remaining channels. The strategy was tested using a bilaterally synchronized research processor, the CCi-MOBILE. Nine bilaterally implanted CI users were tested on speech understanding and were asked to judge the location of a sound based on ITDs encoded using this strategy. Results: Performance was similar in both tasks between the control strategy and the new strategy. Conclusions: We discuss the benefits and drawbacks of the sound coding strategy and provide guidelines for utilizing synchronized processors for developing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- Department of Psychology, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA;
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Mario A. Svirsky
- Department of Otolaryngology, New York University, New York, NY 10016, USA; (M.A.S.); (M.A.)
| | - Mahan Azadpour
- Department of Otolaryngology, New York University, New York, NY 10016, USA; (M.A.S.); (M.A.)
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
2
|
Goupell MJ, Cleary M, Bernstein JG. Letter to the Editor: Discussion of Measurement and Analysis Techniques to Estimate Interaural Place-of-Stimulation Mismatch for Binaural Perception, Re: Staisloff and Aronoff (2021). Comparing Methods for Pairing Electrodes Across Ears With Cochlear Implants, Ear Hear, 42, 1218-1227. Ear Hear 2024; 45:523-527. [PMID: 38372759 PMCID: PMC10990077 DOI: 10.1097/aud.0000000000001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Joshua G.W. Bernstein
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Dennison SR, Thakkar T, Kan A, Litovsky RY. Lateralization of binaural envelope cues measured with a mobile cochlear-implant research processora). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3543-3558. [PMID: 37390320 PMCID: PMC10314808 DOI: 10.1121/10.0019879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Bilateral cochlear implant (BICI) listeners do not have full access to the binaural cues that normal hearing (NH) listeners use for spatial hearing tasks such as localization. When using their unsynchronized everyday processors, BICI listeners demonstrate sensitivity to interaural level differences (ILDs) in the envelopes of sounds, but interaural time differences (ITDs) are less reliably available. It is unclear how BICI listeners use combinations of ILDs and envelope ITDs, and how much each cue contributes to perceived sound location. The CCi-MOBILE is a bilaterally synchronized research processor with the untested potential to provide spatial cues to BICI listeners. In the present study, the CCi-MOBILE was used to measure the ability of BICI listeners to perceive lateralized sound sources when single pairs of electrodes were presented amplitude-modulated stimuli with combinations of ILDs and envelope ITDs. Young NH listeners were also tested using amplitude-modulated high-frequency tones. A cue weighting analysis with six BICI and ten NH listeners revealed that ILDs contributed more than envelope ITDs to lateralization for both groups. Moreover, envelope ITDs contributed to lateralization for NH listeners but had negligible contribution for BICI listeners. These results suggest that the CCi-MOBILE is suitable for binaural testing and developing bilateral processing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | - Alan Kan
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
5
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Thakkar T, Kan A, Litovsky RY. Lateralization of interaural time differences with mixed rates of stimulation in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1912. [PMID: 37002065 PMCID: PMC10036141 DOI: 10.1121/10.0017603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
While listeners with bilateral cochlear implants (BiCIs) are able to access information in both ears, they still struggle to perform well on spatial hearing tasks when compared to normal hearing listeners. This performance gap could be attributed to the high stimulation rates used for speech representation in clinical processors. Prior work has shown that spatial cues, such as interaural time differences (ITDs), are best conveyed at low rates. Further, BiCI listeners are sensitive to ITDs with a mixture of high and low rates. However, it remains unclear whether mixed-rate stimuli are perceived as unitary percepts and spatially mapped to intracranial locations. Here, electrical pulse trains were presented on five, interaurally pitch-matched electrode pairs using research processors, at either uniformly high rates, low rates, or mixed rates. Eight post-lingually deafened adults were tested on perceived intracranial lateralization of ITDs ranging from 50 to 1600 μs. Extent of lateralization depended on the location of low-rate stimulation along the electrode array: greatest in the low- and mixed-rate configurations, and smallest in the high-rate configuration. All but one listener perceived a unitary auditory object. These findings suggest that a mixed-rate processing strategy can result in good lateralization and convey a unitary auditory object with ITDs.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
7
|
Neonatal Deafening Selectively Degrades the Sensitivity to Interaural Time Differences of Electrical Stimuli in Low-Frequency Pathways in Rats. eNeuro 2023; 10:ENEURO.0437-22.2022. [PMID: 36609304 PMCID: PMC9850913 DOI: 10.1523/eneuro.0437-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
We examined the effect of neonatal deafening on frequency-specific pathways for processing of interaural time differences (ITDs) in cochlear-implant stimuli. Animal studies have demonstrated differences in neural ITD sensitivity in the inferior colliculus (IC) depending on the intracochlear location of intracochlear stimulating electrodes. We used neonatally deafened (ND) rats of both sexes and recorded the responses of single neurons in the IC to electrical stimuli with ITDs delivered to the apical or basal cochlea and compared them with acutely deafened (AD) rats of both sexes with normal hearing (NH) during development. We found that neonatal deafness significantly impacted the ITD sensitivity and the ITD tuning patterns restricted to apically driven IC neurons. In ND rats, the ITD sensitivity of apically driven neurons is reduced to values similar to basally driven neurons. The prevalence of ITD-sensitive apical neurons with a peak-shaped ITD tuning curve, which may reflect predominant input from the medial superior olivary (MSO) complex, in ND rats was diminished compared with that in AD rats (67%, AD vs 40%, ND). Conversely, monotonic-type responses rarely occurred in AD rats (14%) but were approximately equally as prevalent as peak-type tuning curves in ND rats (42%). Nevertheless, in ND rats, the ITD at the maximum slope of the ITD tuning curve was still more concentrated within the physiological ITD range in apically driven than in basally driven neurons. These results indicate that the development of high ITD sensitivity processed by low-frequency pathways depends on normal auditory experience and associated biases in ITD tuning strategies.
Collapse
|
8
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
9
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Gibbs BE, Bernstein JGW, Brungart DS, Goupell MJ. Effects of better-ear glimpsing, binaural unmasking, and spectral resolution on spatial release from masking in cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1230. [PMID: 36050186 PMCID: PMC9420049 DOI: 10.1121/10.0013746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Bilateral cochlear-implant (BICI) listeners obtain less spatial release from masking (SRM; speech-recognition improvement for spatially separated vs co-located conditions) than normal-hearing (NH) listeners, especially for symmetrically placed maskers that produce similar long-term target-to-masker ratios at the two ears. Two experiments examined possible causes of this deficit, including limited better-ear glimpsing (using speech information from the more advantageous ear in each time-frequency unit), limited binaural unmasking (using interaural differences to improve signal-in-noise detection), or limited spectral resolution. Listeners had NH (presented with unprocessed or vocoded stimuli) or BICIs. Experiment 1 compared natural symmetric maskers, idealized monaural better-ear masker (IMBM) stimuli that automatically performed better-ear glimpsing, and hybrid stimuli that added worse-ear information, potentially restoring binaural cues. BICI and NH-vocoded SRM was comparable to NH-unprocessed SRM for idealized stimuli but was 14%-22% lower for symmetric stimuli, suggesting limited better-ear glimpsing ability. Hybrid stimuli improved SRM for NH-unprocessed listeners but degraded SRM for BICI and NH-vocoded listeners, suggesting they experienced across-ear interference instead of binaural unmasking. In experiment 2, increasing the number of vocoder channels did not change NH-vocoded SRM. BICI SRM deficits likely reflect a combination of across-ear interference, limited better-ear glimpsing, and poorer binaural unmasking that stems from cochlear-implant-processing limitations other than reduced spectral resolution.
Collapse
Affiliation(s)
- Bobby E Gibbs
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Joshua G W Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, USA
| | - Douglas S Brungart
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland 20889, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
11
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Sunwoo W, Oh SH. Effects of place of stimulation on the interaural time difference sensitivity in bilateral electrical intracochlear stimulations: Neurophysiological study in a rat model. J Neurosci Res 2021; 100:461-476. [PMID: 34837408 DOI: 10.1002/jnr.24991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/09/2022]
Abstract
We examined the sensitivity of the neurons in the inferior colliculus (IC) in male and female rats to the interaural time differences (ITDs) conveyed in electrical pulse trains. Using bipolar pairs of electrodes that selectively activate the auditory nerve fibers at different intracochlear locations, we assessed whether the responses to electrical stimulation with ITDs in different frequency regions were processed differently. Most well-isolated single units responded to the electrical stimulation in only one of the apical or basal cochlear regions, and they were classified as either apical or basal units. Regardless of the cochlear stimulating location, more than 70% of both apical and basal units were sensitive to ITDs of electrical stimulation. However, the pulse rate dependence of neural ITD sensitivity differed significantly depending on the location of the stimulation. Moreover, ITD discrimination thresholds and the relative incidence of ITD tuning type markedly differed between units activated by apical and basal stimulations. With apical stimulation, IC neurons had a higher incidence of peak-type ITD function, which mostly exhibited the steepest position of the tuning curve within the rat's physiological ITD range of ±160 μs and, accordingly, had better ITD discrimination thresholds than those with basal stimulation. These results support the idea that ITD processing in the IC might be determined by functionally segregated frequency-specific pathways from the cochlea to the auditory midbrain.
Collapse
Affiliation(s)
- Woongsang Sunwoo
- Department of Otorhinolaryngology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2021; 23:119-136. [PMID: 34812980 PMCID: PMC8782964 DOI: 10.1007/s10162-021-00821-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Normal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.
Collapse
|
14
|
Central Auditory Plasticity from Molecules to Behavior. Brain Sci 2021; 11:brainsci11050573. [PMID: 33946844 PMCID: PMC8145046 DOI: 10.3390/brainsci11050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 11/21/2022] Open
|