1
|
Zhao Y, Zhao X, Ji K, Wang J, Zhao Y, Lin J, Gang Q, Yu M, Yuan Y, Jiang H, Sun C, Fang F, Yan C, Wang Z. The clinical and genetic spectrum of mitochondrial diseases in China: A multicenter retrospective cross-sectional study. Clin Genet 2024; 106:733-744. [PMID: 39118480 DOI: 10.1111/cge.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xutong Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Junling Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Qiang Gang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Zhao Y, Hou Y, Zhao X, Liufu T, Yu M, Zhang W, Xie Z, Zhang VW, Yuan Y, Wang Z. The clinical, myopathological, and genetic analysis of 155 Chinese mitochondrial ophthalmoplegia patients with mitochondrial DNA single large deletions. Mol Genet Genomic Med 2024; 12:e2328. [PMID: 38018320 PMCID: PMC10767604 DOI: 10.1002/mgg3.2328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Progressive external ophthalmoplegia (PEO) is a common subtype of mitochondrial encephalomyopathy. OBJECTIVE The study aimed to investigate the relationship between mitochondrial DNA (mtDNA) abnormalities, muscle pathology, and clinical manifestations in Chinese patients with single large-scale mtDNA deletion presenting with PEO. METHODS This is a retrospective single-center study. Patients with PEO who had a single large deletion in mitochondrial DNA were included in this study. The associations were analyzed between mtDNA deletion patterns, myopathological changes, and clinical characteristics. RESULTS In total, 155 patients with mitochondrial PEO carrying single large-scale mtDNA mutations were enrolled, including 137 chronic progressive external ophthalmoplegia (CPEO) and 18 Kearns-Sayre syndrome (KSS) patients. The onset ages were 9.61 ± 4.12 in KSS and 20.15 ± 9.06 in CPEO. The mtDNA deletions ranged from 2225 bp to 9131 bp, with m.8470_13446del being the most common. The KSS group showed longer deletions than the CPEO group (p = 0.004). Additionally, a higher number of deleted genes encoding respiratory chain complex subunits (p = 0.001) and tRNA genes (p = 0.009) were also observed in the KSS group. A weak negative correlation between the mtDNA deletion size and ages of onset (p < 0.001, r = -0.369) was observed. The proportion of ragged red fibers, ragged blue fibers, and cytochrome c negative fibers did not correlate significantly with onset ages (p > 0.05). However, a higher percentage of abnormal muscle fibers corresponds to an increased prevalence of exercise intolerance, limb muscle weakness, dysphagia, and cerebellar ataxia. CONCLUSION We reported a large Chinese cohort consisting of mitochondrial PEO patients with single large-scale mtDNA deletions. Our results demonstrated that the length and locations of mtDNA deletions may influence onset ages and clinical phenotypes. The severity of muscle pathology could not only indicate diagnosis but also may be associated with clinical manifestations beyond the extraocular muscles.
Collapse
Affiliation(s)
- Yang Zhao
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | - Yue Hou
- Department of GeriatricsPeking University First HospitalBeijingChina
| | - Xutong Zhao
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
- Department of NeurologyBeijing Jishuitan HospitalBeijingChina
| | - Tongling Liufu
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | - Meng Yu
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | - Wei Zhang
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | - Zhiying Xie
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | | | - Yun Yuan
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| | - Zhaoxia Wang
- Department of NeurologyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Neurovascular Disease DiscoveryBeijingChina
| |
Collapse
|
3
|
Björkman K, Vissing J, Østergaard E, Bindoff LA, de Coo IFM, Engvall M, Hikmat O, Isohanni P, Kollberg G, Lindberg C, Majamaa K, Naess K, Uusimaa J, Tulinius M, Darin N. Phenotypic spectrum and clinical course of single large-scale mitochondrial DNA deletion disease in the paediatric population: a multicentre study. J Med Genet 2023; 60:65-73. [PMID: 34872991 PMCID: PMC9811091 DOI: 10.1136/jmedgenet-2021-108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. METHODS A retrospective multicentre study was performed in patients with clinical onset <16 years of age, diagnosed and followed in seven European mitochondrial disease centres. RESULTS A total of 80 patients were included. The average age at disease onset and at last examination was 10 and 31 years, respectively. The median time from disease onset to death was 11.5 years. Pearson syndrome was present in 21%, Kearns-Sayre syndrome spectrum disorder in 50% and progressive external ophthalmoplegia in 29% of patients. Haematological abnormalities were the hallmark of the disease in preschool children, while the most common presentations in older patients were ptosis and external ophthalmoplegia. Skeletal muscle involvement was found in 65% and exercise intolerance in 25% of the patients. Central nervous system involvement was frequent, with variable presence of ataxia (40%), cognitive involvement (36%) and stroke-like episodes (9%). Other common features were pigmentary retinopathy (46%), short stature (42%), hearing impairment (39%), cardiac disease (39%), diabetes mellitus (25%) and renal disease (19%). CONCLUSION Our study provides new insights into the phenotypic spectrum of childhood-onset, LMD-associated syndromes. We found a wider spectrum of more prevalent multisystem involvement compared with previous studies, most likely related to a longer time of follow-up.
Collapse
Affiliation(s)
- Kristoffer Björkman
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - John Vissing
- Copenhagen Neuromuscular Centre, Rigshospitalet, Kobenhavn, Denmark
| | - Elsebet Østergaard
- Department of Clinical Genetics, Rigshospitalet, Kobenhavn, Denmark,Department of Clinical Medicine, University of Copenhagen, Kobenhavn, Denmark
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Unit Clinical Genomics, Maastricht University, Maastricht, The Netherlands,Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Martin Engvall
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Omar Hikmat
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,University of Helsinki Children's Hospital, Helsinki, Finland
| | - Gittan Kollberg
- Department of Clinical Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kari Majamaa
- Medical Research Center, Oulu University Faculty of Medicine, Oulu, Finland,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Karin Naess
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden,Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johanna Uusimaa
- PEDEGO Research Unit, Oulu University Faculty of Medicine, Oulu, Finland,Clinic for Children and Adolescents and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mar Tulinius
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Grigalionienė K, Burnytė B, Balkelienė D, Ambrozaitytė L, Utkus A. Kearns-Sayre syndrome case. Novel 5,9 kb mtDNA deletion. Mol Genet Genomic Med 2023; 11:e2059. [PMID: 36181358 PMCID: PMC9834195 DOI: 10.1002/mgg3.2059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder characterized by onset before 20 years of age and a typical clinical triad: progressive external ophthalmoplegia, pigmentary retinopathy and cardiac conduction anomalies. In most cases KSS is caused by spontaneous heteroplasmic single large-scale mitochondrial DNA (mtDNA) deletions. Long-range polymerase chain reaction (LR-PCR), next generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA) are the most widely applied methods for the identification of mtDNA deletions. Here, we report the case of 20-year-old male who presented with classic Kearns-Sayre syndrome, confirmed by novel 5,9 kb mtDNA deletion. METHODS AND RESULTS LR-PCR and MLPA methods were applied to identify the mitochondrial DNA deletion for the patient, but the results were conflicting. Molecular analysis using primer walking and Sanger sequencing identified a novel 5888 base pairs mtDNA deletion (NC_012920.1:m.6069_11956del) with CAAC nucleotides repeat sequence at the breakpoints. CONCLUSION Our study enriched the mtDNA variation spectrum associated with KSS and demonstrated the importance of choosing relevant molecular genetic methods.
Collapse
Affiliation(s)
- Kristina Grigalionienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Danutė Balkelienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of MedicineVilnius UniversityVilniusLithuania
| |
Collapse
|
5
|
Dudakova L, Skalicka P, Davidson AE, Sadan AN, Chylova M, Jahnova H, Anteneova N, Tesarova M, Honzik T, Liskova P. Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy? Genes (Basel) 2021; 12:genes12121918. [PMID: 34946867 PMCID: PMC8702069 DOI: 10.3390/genes12121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells.
Collapse
Affiliation(s)
- Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Alice E. Davidson
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Amanda N. Sadan
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
| | - Monika Chylova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Helena Jahnova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Nicole Anteneova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Marketa Tesarova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic; (L.D.); (P.S.); (M.C.); (H.J.); (N.A.); (M.T.); (T.H.)
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (A.E.D.); (A.N.S.)
- Correspondence: ; Tel.: +420-224-967-139
| |
Collapse
|
6
|
Gayathri N, Deepha S, Sharma S. Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects. Mitochondrion 2021; 61:69-84. [PMID: 34592422 DOI: 10.1016/j.mito.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 12/29/2022]
Abstract
Mitochondrial disorders are one of the most common neurometabolic disorders affecting all age groups. The phenotype-genotype heterogeneity in these disorders can be attributed to the dual genetic control on mitochondrial functions, posing a challenge for diagnosis. Though the advancement in the high-throughput sequencing and other omics platforms resulted in a "genetics-first" approach, the muscle biopsy remains the benchmark in most of the mitochondrial disorders. This review focuses on the myopathological aspects of primary mitochondrial disorders. The utility of muscle biopsy is not limited to analyse the structural abnormalities; rather it also proves to be a potential tool to understand the deranged sub-cellular functions.
Collapse
Affiliation(s)
- Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India.
| | - Sekar Deepha
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| | - Shivani Sharma
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560 029, India
| |
Collapse
|
7
|
Kierdaszuk B, Kaliszewska M, Rusecka J, Kosińska J, Bartnik E, Tońska K, Kamińska AM, Kostera-Pruszczyk A. Progressive External Ophthalmoplegia in Polish Patients-From Clinical Evaluation to Genetic Confirmation. Genes (Basel) 2020; 12:genes12010054. [PMID: 33396418 PMCID: PMC7824435 DOI: 10.3390/genes12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial encephalomyopathies comprise a group of heterogeneous disorders resulting from impaired oxidative phosphorylation (OxPhos). Among a variety of symptoms progressive external ophthalmoplegia (PEO) seems to be the most common. The aim of this study is to present clinical and genetic characteristics of Polish patients with PEO. Clinical, electrophysiological, neuroradiological, and morphological data of 84 patients were analyzed. Genetic studies of mitochondrial DNA (mtDNA) were performed in all patients. Among nuclear DNA (nDNA) genes POLG was sequenced in 41 patients, TWNK (C10orf2) in 13 patients, and RNASEH1 in 2 patients. Total of 27 patients were included in the chronic progressive external ophthalmoplegia (CPEO) group, 24 in the CPEO+ group. Twenty-six patients had mitochondrial encephalomyopathy (ME), six patients Kearns-Sayre syndrome (KSS), and one patient sensory ataxic neuropathy, dysarthria, ophthalmoparesis (SANDO) syndrome. Genetic analysis of nDNA genes revealed the presence of pathogenic or possibly pathogenic variants in the POLG gene in nine patients, the TWNK gene in five patients and the RNASEH1 gene in two patients. Detailed patients' history and careful assessment of family history are essential in the diagnostic work-up. Genetic studies of both mtDNA and nDNA are necessary for the final diagnosis of progressive external ophthalmoplegia and for genetic counseling.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Cerebellum/diagnostic imaging
- Cerebellum/metabolism
- Cerebellum/pathology
- Cerebrum/diagnostic imaging
- Cerebrum/metabolism
- Cerebrum/pathology
- Child
- DNA Helicases/genetics
- DNA Helicases/metabolism
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Diagnosis, Differential
- Female
- Gene Expression
- Humans
- Kearns-Sayre Syndrome/diagnostic imaging
- Kearns-Sayre Syndrome/genetics
- Kearns-Sayre Syndrome/metabolism
- Kearns-Sayre Syndrome/pathology
- Male
- Middle Aged
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Diseases/diagnostic imaging
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/pathology
- Mitochondrial Encephalomyopathies/diagnostic imaging
- Mitochondrial Encephalomyopathies/genetics
- Mitochondrial Encephalomyopathies/metabolism
- Mitochondrial Encephalomyopathies/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Ophthalmoplegia, Chronic Progressive External/diagnostic imaging
- Ophthalmoplegia, Chronic Progressive External/genetics
- Ophthalmoplegia, Chronic Progressive External/metabolism
- Ophthalmoplegia, Chronic Progressive External/pathology
- Pedigree
- Poland
- Polymorphism, Genetic
- Ribonuclease H/genetics
- Ribonuclease H/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- Biruta Kierdaszuk
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (A.M.K.); (A.K.-P.)
- Correspondence: ; Tel.: +48-22-599-2858; Fax: +48-22-599-1857
| | - Magdalena Kaliszewska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.K.); (J.R.); (E.B.); (K.T.)
| | - Joanna Rusecka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.K.); (J.R.); (E.B.); (K.T.)
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Pawinskiego 3c, 02-106 Warsaw, Poland;
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.K.); (J.R.); (E.B.); (K.T.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland; (M.K.); (J.R.); (E.B.); (K.T.)
| | - Anna M. Kamińska
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (A.M.K.); (A.K.-P.)
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (A.M.K.); (A.K.-P.)
| |
Collapse
|