1
|
De Preter CC, Leimer EM, Sonneborn A, Heinricher MM. Comparative analysis of spike-sorters in large-scale brainstem recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623089. [PMID: 39605601 PMCID: PMC11601346 DOI: 10.1101/2024.11.11.623089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent technological advancements in high-density multi-channel electrodes have made it possible to record large numbers of neurons from previously inaccessible regions. While the performance of automated spike-sorters has been assessed in recordings from cortex, dentate gyrus, and thalamus, the most effective and efficient approach for spike-sorting can depend on the target region due to differing morphological and physiological characteristics. We therefore assessed the performance of five commonly used sorting packages, Kilosort3, MountainSort5, Tridesclous, SpyKING CIRCUS, and IronClust, in recordings from the rostral ventromedial medulla, a region that has been characterized using single-electrode recordings but that is essentially unexplored at the high-density network level. As demonstrated in other brain regions, each sorter produced unique results. Manual curation preferentially eliminated units detected by only one sorter. Kilosort3 and IronClust required the least curation while maintaining the largest number of units, whereas SpyKING CIRCUS and MountainSort5 required substantial curation. Tridesclous consistently identified the smallest number of units. Nonetheless, all sorters successfully identified classically defined RVM physiological cell types. These findings suggest that while the level of manual curation needed may vary across sorters, each can extract meaningful data from this deep brainstem site.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elizabeth M Leimer
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Kehl MS, Mackay S, Ohla K, Schneider M, Borger V, Surges R, Spehr M, Mormann F. Single-neuron representations of odours in the human brain. Nature 2024; 634:626-634. [PMID: 39385026 PMCID: PMC11485236 DOI: 10.1038/s41586-024-08016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.
Collapse
Affiliation(s)
- Marcel S Kehl
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kathrin Ohla
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Schonhaut DR, Rao AM, Ramayya AG, Solomon EA, Herweg NA, Fried I, Kahana MJ. MTL neurons phase-lock to human hippocampal theta. eLife 2024; 13:e85753. [PMID: 38193826 PMCID: PMC10948143 DOI: 10.7554/elife.85753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/08/2024] [Indexed: 01/10/2024] Open
Abstract
Memory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus. We recorded extracellular spikes from 1854 single- and multi-units simultaneously with hippocampal local field potentials (LFPs) in 28 neurosurgical patients who completed virtual navigation experiments. A majority of hippocampal neurons phase-locked to oscillations in the slow (2-4 Hz) or fast (6-10 Hz) theta bands, with a significant subset exhibiting nested slow theta × beta frequency (13-20 Hz) phase-locking. Outside of the hippocampus, phase-locking to hippocampal oscillations occurred only at theta frequencies and primarily among neurons in the entorhinal cortex and amygdala. Moreover, extrahippocampal neurons phase-locked to hippocampal theta even when theta did not appear locally. These results indicate that spike-time synchronization with hippocampal theta is a defining feature of neuronal activity in the hippocampus and structurally connected MTL regions. Theta phase-locking could mediate flexible communication with the hippocampus to influence the content and quality of memories.
Collapse
Affiliation(s)
- Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aditya M Rao
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Ashwin G Ramayya
- Department of Neurosurgery, University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan A Solomon
- Department of Bioengineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Nora A Herweg
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | - Itzhak Fried
- Department of Neurosurgery, Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos AngelesUnited States
- Faculty of Medicine, Tel-Aviv UniversityTel-AvivIsrael
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Staresina BP, Niediek J, Borger V, Surges R, Mormann F. How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 2023; 26:1429-1437. [PMID: 37429914 PMCID: PMC10400429 DOI: 10.1038/s41593-023-01381-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Learning and plasticity rely on fine-tuned regulation of neuronal circuits during offline periods. An unresolved puzzle is how the sleeping brain, in the absence of external stimulation or conscious effort, coordinates neuronal firing rates (FRs) and communication within and across circuits to support synaptic and systems consolidation. Using intracranial electroencephalography combined with multiunit activity recordings from the human hippocampus and surrounding medial temporal lobe (MTL) areas, we show that, governed by slow oscillation (SO) up-states, sleep spindles set a timeframe for ripples to occur. This sequential coupling leads to a stepwise increase in (1) neuronal FRs, (2) short-latency cross-correlations among local neuronal assemblies and (3) cross-regional MTL interactions. Triggered by SOs and spindles, ripples thus establish optimal conditions for spike-timing-dependent plasticity and systems consolidation. These results unveil how the sequential coupling of specific sleep rhythms orchestrates neuronal processing and communication during human sleep.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
5
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|