1
|
Ganho-Ávila A, Sobral M, Berg MLVD. Transcranial magnetic stimulation and transcranial direct current stimulation in reducing depressive symptoms during the peripartum period. Curr Opin Psychiatry 2024; 37:337-349. [PMID: 38994808 DOI: 10.1097/yco.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW To present the latest data on the efficacy, safety, and acceptability of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in peripartum depression (PPD), complemented by notes emerging from our clinical and research experience. RECENT FINDINGS TMS and tDCS show promising results to manage mild to moderate depressive symptoms in the peripartum period. Evidence of TMS efficacy during pregnancy and the postpartum comes from two small randomized controlled trials (RCTs) with encouraging but still inconsistent results. Evidence of tDCS efficacy during pregnancy comes from one small RCT and in the postpartum the first RCT is just now being conducted and results are highly expected. The safety profile (with transient mild adverse effect to women and no known risk to the foetus/newborn) and acceptability by women seems overall good. However, the perspectives from health professionals and managers are unclear. SUMMARY Whereas TMS accelerated protocols (e.g., more than one session/day) and shorter sessions (e.g., theta burst stimulation) could address the need for fast results in PPD, home-based tDCS systems could address accessibility issues. Currently, the evidence on the efficacy of TMS and tDCS in PPD is limited warranting further research to support stronger evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, University of Coimbra (Portugal), Coimbra, Portugal
| | - Mónica Sobral
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences, University of Coimbra (Portugal), Coimbra, Portugal
| | - Mijke Lambregtse-van den Berg
- Departments of Psychiatry and Child & Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Caro-Cañizares I, López Carpintero N, Carmona-Camacho R. The Elephant in the Room: A Systematic Review of the Application and Effects of Psychological Treatments for Pregnant Women with Dual Pathology (Mental Health and Substance-Related Disorders). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:392. [PMID: 38673305 PMCID: PMC11050033 DOI: 10.3390/ijerph21040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Maternal mental health and substance use, referred to as dual pathology, represent significant concerns associated with adverse pregnancy and birth outcomes, a prevalence higher than commonly anticipated. Nonetheless, a notable dearth exists ofevidence-based treatment protocols tailored for pregnant women with dual pathology. METHODS A systematic review, adhering to the PRISMA methodology, was conducted. RESULTS Out of the 57 identified papers deemed potentially relevant, only 2were ultimately included. Given the limited number of studies assessing the efficacy of psychological interventions utilizing randomized controlled trials (RCTs) for both mental health and substance misuse, and considering the diverse objectives and measures employed, definitive conclusions regarding the effectiveness of psychological interventions in this domain prove challenging. CONCLUSIONS Maternal mental health appears to be the proverbial "elephant in the room". The development of specialized and integrated interventions stands as an imperative to effectively address this pressing issue. As elucidated in the present review, these interventions ought to be grounded in empirical evidence. Furthermore, it is essential that such interventions undergo rigorous evaluation through RCTs to ascertain their efficacy levels. Ultimately, the provision of these interventions by psychology/psychiatric professionals, both within clinical practice and the RCTs themselves, is recommended to facilitate the generalizability of the results to specialized settings.
Collapse
Affiliation(s)
- Irene Caro-Cañizares
- Facultad de Ciencias de la Salud y la Educación, Universidad a Distancia de Madrid, UDIMA, 28400 Collado Villalba, Spain
| | - Nayara López Carpintero
- Departamento de Obstetricia y Ginecología, Hospital Universitario del Tajo, 28300 Aranjuez, Spain
| | | |
Collapse
|
3
|
Bikson M, Ganho-Ávila A, Datta A, Gillick B, Joensson MG, Kim S, Kim J, Kirton A, Lee K, Marjenin T, Onarheim B, Rehn EM, Sack AT, Unal G. Limited output transcranial electrical stimulation 2023 (LOTES-2023): Updates on engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul 2023; 16:840-853. [PMID: 37201865 PMCID: PMC10350287 DOI: 10.1016/j.brs.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023] Open
Abstract
The objective and scope of this Limited Output Transcranial Electrical Stimulation 2023 (LOTES-2023) guidance is to update the previous LOTES-2017 guidance. These documents should therefore be considered together. The LOTES provides a clearly articulated and transparent framework for the design of devices providing limited output (specified low-intensity range) transcranial electrical stimulation for a variety of intended uses. These guidelines can inform trial design and regulatory decisions, but most directly inform manufacturer activities - and hence were presented in LOTES-2017 as "Voluntary industry standard for compliance controlled limited output tES devices". In LOTES-2023 we emphasize that these standards are largely aligned across international standards and national regulations (including those in USA, EU, and South Korea), and so might be better understood as "Industry standards for compliance controlled limited output tES devices". LOTES-2023 is therefore updated to reflect a consensus among emerging international standards, as well as best available scientific evidence. "Warnings" and "Precautions" are updated to align with current biomedical evidence and applications. LOTES standards applied to a constrained device dose range, but within this dose range and for different use-cases, manufacturers are responsible to conduct device-specific risk management.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention-CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Abhishek Datta
- Research and Development, Soterix Medical Inc., Woodbridge, NJ, United States
| | - Bernadette Gillick
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Sungjin Kim
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | - Jinuk Kim
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | | | - Balder Onarheim
- Research and Development, PlatoScience ApS, Copenhagen, Denmark
| | - Erik M Rehn
- Research and Development, Flow Neuroscience, Malmo, Skane Lan, Sweden
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| |
Collapse
|
4
|
Mucci V, Demori I, Browne CJ, Deblieck C, Burlando B. Fibromyalgia in Pregnancy: Neuro-Endocrine Fluctuations Provide Insight into Pathophysiology and Neuromodulation Treatment. Biomedicines 2023; 11:biomedicines11020615. [PMID: 36831148 PMCID: PMC9953487 DOI: 10.3390/biomedicines11020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Fibromyalgia (FM) is a chronic pain disorder with unclear pathophysiological mechanisms, which leads to challenges in patient management. In addition to pain, the disorder presents with a broad range of symptoms, such as sleep disruption, chronic fatigue, brain fog, depression, muscle stiffness, and migraine. FM has a considerable female prevalence, and it has been shown that symptoms are influenced by the menstrual cycle and periods of significant hormonal and immunological changes. There is increasing evidence that females with FM experience an aggravation of symptoms in pregnancy, particularly during the third trimester and after childbirth. In this perspective paper, we focus on the neuro-endocrine interactions that occur between progesterone, allopregnanolone, and cortisol during pregnancy, and propose that they align with our previously proposed model of FM pathogenesis based on GABAergic "weakening" in a thalamocortical neural loop system. Based on our hypothesis, we introduce the possibility of utilizing transcranial direct current stimulation (tDCS) as a non-invasive treatment potentially capable of exerting sex-specific effects on FM patients.
Collapse
Affiliation(s)
- Viviana Mucci
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
- Correspondence:
| | - Ilaria Demori
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Corso Europa, 26, 16132 Genova, Italy
| | - Cherylea J. Browne
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Choi Deblieck
- Antwerp Management School, University of Antwerp, Boogkeers 5, 2000 Antwerp, Belgium
| | - Bruno Burlando
- Department of Pharmacy, DIFAR, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
5
|
Gersten M, Jamil A, Cassano P, Camprodon JA. Transcranial Direct Current Stimulation (tDCS) for Major Depressive Disorder. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20221025-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Brain Stimulation and Neuroplasticity—Series II. Brain Sci 2022; 12:brainsci12081084. [PMID: 36009147 PMCID: PMC9405701 DOI: 10.3390/brainsci12081084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
|
7
|
Efficacy and Safety of Transcranial Electric Stimulation during the Perinatal Period: A Systematic Literature Review and Three Case Reports. J Clin Med 2022; 11:jcm11144048. [PMID: 35887812 PMCID: PMC9318834 DOI: 10.3390/jcm11144048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The perinatal period is an at-risk period for the emergence or decompensation of psychiatric disorders. Transcranial electrical stimulation (tES) is an effective and safe treatment for many psychiatric disorders. Given the reluctance to use pharmacological treatments during pregnancy or breastfeeding, tES may be an interesting treatment to consider. Our study aims to evaluate the efficacy and safety of tES in the perinatal period through a systematic literature review followed by three original case reports. Method: Following PRISMA guidelines, a systematic review of MEDLINE and ScienceDirect was undertaken to identify studies on tES on women during the perinatal period. The initial research was conducted until 31 December 2021 and search terms included: tDCS, transcranial direct current stimulation, tACS, transcranial alternating current stimulation, tRNS, transcranial random noise stimulation, pregnancy, perinatal, postnatal, and postpartum. Results: Seven studies reporting on 33 women during the perinatal period met the eligibility criteria. No serious adverse effects for the mother or child were reported. Data were limited to the use of tES during pregnancy in patients with schizophrenia or unipolar depression. In addition, we reported three original case reports illustrating the efficacy and safety of tDCS: in a pregnant woman with bipolar depression, in a pregnant woman with post-traumatic stress disorder (sham tDCS), and in a breastfeeding woman with postpartum depression. Conclusions: The results are encouraging, making tES a potentially safe and effective treatment in the perinatal period. Larger studies are needed to confirm these initial results, and any adverse effects on the mother or child should be reported. In addition, research perspectives on the medico-economic benefits of tES, and its realization at home, are to be investigated in the future.
Collapse
|
8
|
Ten Sessions of 30 Min tDCS over 5 Days to Achieve Remission in Depression: A Randomized Pilot Study. J Clin Med 2022; 11:jcm11030782. [PMID: 35160235 PMCID: PMC8836436 DOI: 10.3390/jcm11030782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
Although transcranial Direct Current stimulation (tDCS) shows promise in the treatment of major depressive episodes, the optimal parameters and population to target remain unclear. We investigated the clinical interest of a 10 session tDCS regimen in patients with mild to severe treatment-resistant depression, in a pilot double-blind, randomized sham-controlled trial. tDCS was delivered over 5 consecutive days (two 30 min sessions per day separated by at least 2 h, 2 mA). The anode and cathode were placed over the left and the right dorsolateral prefrontal cortex, respectively. One month after tDCS, we observed significantly fewer patients who achieved remission (MADRS10 < 10) in the sham group (0 out of 18 patients) than in the active group (5 out of 21 patients; p = 0.05). However, no significant difference was observed between the groups regarding the mean scores of severity changes throughout the study period. Bifrontal add-on tDCS delivered twice per day over 5 days, in combination with antidepressant medication, can be a safe and suitable approach to achieve remission in patients with mild to severe treatment-resistant major depressive disorder. However, in regards to the pilot nature and limitations of the present study, further studies are needed before any frank conclusions can be made regarding the use of tDCS with the proposed parameters in clinical settings.
Collapse
|
9
|
Li Z, Zhao X, Feng L, Zhao Y, Pan W, Liu Y, Yin M, Yue Y, Fang X, Liu G, Gao S, Zhang X, Huang NE, Du X, Chen R. Can Daytime Transcranial Direct Current Stimulation Treatment Change the Sleep Electroencephalogram Complexity of REM Sleep in Depressed Patients? A Double-Blinded, Randomized, Placebo-Controlled Trial. Front Psychiatry 2022; 13:851908. [PMID: 35664468 PMCID: PMC9157570 DOI: 10.3389/fpsyt.2022.851908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The purpose of this study was to determine the effects of daytime transcranial direct current stimulation (tDCS) on sleep electroencephalogram (EEG) in patients with depression. METHODS The study was a double-blinded, randomized, controlled clinical trial. A total of 37 patients diagnosed with a major depression were recruited; 19 patients (13 females and 6 males mean age 44.79 ± 15.25 years) received tDCS active stimulation and 18 patients (9 females and 9 males; mean age 43.61 ± 11.89 years) received sham stimulation. Ten sessions of daytime tDCS were administered with the anode over F3 and the cathode over F4. Each session delivered a 2 mA current for 30 min per 10 working days. Hamilton-24 and Montgomery scales were used to assess the severity of depression, and polysomnography (PSG) was used to assess sleep structure and EEG complexity. Eight intrinsic mode functions (IMFs) were computed from each EEG signal in a channel. The sample entropy of the cumulative sum of the IMFs were computed to acquire high-dimensional multi-scale complexity information of EEG signals. RESULTS The complexity of Rapid Eye Movement (REM) EEG signals significantly decreased intrinsic multi-scale entropy (iMSE) (1.732 ± 0.057 vs. 1.605 ± 0.046, P = 0.0004 in the case of the C4 channel, IMF 1:4 and scale 7) after tDCS active stimulation. The complexity of the REM EEG signals significantly increased iMSE (1.464 ± 0.101 vs. 1.611 ± 0.085, P = 0.001 for C4 channel, IMF 1:4 and scale 7) after tDCS sham stimulation. There was no significant difference in the Hamilton-24 (P = 0.988), Montgomery scale score (P = 0.726), and sleep structure (N1% P = 0.383; N2% P = 0.716; N3% P = 0.772) between the two groups after treatment. CONCLUSION Daytime tDCS changed the complexity of sleep in the REM stage, and presented as decreased intrinsic multi-scale entropy, while no changes in sleep structure occurred. This finding indicated that daytime tDCS may be an effective method to improve sleep quality in depressed patients. Trial registration This trial has been registered at the ClinicalTrials.gov (protocol ID: TCHIRB-10409114, in progress).
Collapse
Affiliation(s)
- Zhe Li
- Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xueli Zhao
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Lingfang Feng
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yu Zhao
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Wen Pan
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ming Yin
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Yan Yue
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaojia Fang
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Guorui Liu
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Shigeng Gao
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaobin Zhang
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | | | - Xiangdong Du
- Sleep Center, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Rui Chen
- Sleep Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|