1
|
Kwak C, Byun Y, You S, Sagong J, Kim DY, Cho WH, Kong TH, Oh SH, Jin IK, Suh MJ, Lee HJ, Choi SJ, Cha D, Park KH, Seo YJ. Understanding Standard Procedure in Auditory Brainstem Response: Importance of Normative Data. J Audiol Otol 2024; 28:243-251. [PMID: 39501685 PMCID: PMC11540972 DOI: 10.7874/jao.2024.00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 09/07/2024] [Indexed: 11/09/2024] Open
Abstract
The auditory brainstem response (ABR) is a noninvasive test that measures neural activity in response to auditory stimuli. Racial differences in head shape have provided strong evidence for specific normative data and accurate device calibration. International standards emphasize the need for standardized procedures and references. This study aimed to outline the standard procedure and related normative ABR values. Standard procedures were performed according to International Electrotechnical Commission (IEC) standards. Five studies from two countries were included to compare the normative values of the ABR. The dataset from the National Standard Reference Data Center (NSRDC) was used as reference. Normative values were described in terms of stimuli, latency, and amplitude. For click stimuli, the latency of the ABR showed different patterns across populations, such as those from Korea and the USA. Although the latencies reported by the NSRDC and for Koreans were relatively short, those reported for USA populations were longer. Using clicks, it was shown that the USA population had the largest ABR amplitude compared to those reported for the other two datasets. For Wave V latency using tone bursts, a similar pattern was identified with click stimuli. Frequency-specific trends were also observed. Although there is a lack of ABR datasets, the information and insights of the present study could be utilized as standard guidelines in research on ABR.
Collapse
Affiliation(s)
- Chanbeom Kwak
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yuseon Byun
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sunghwa You
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Biostatistics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Junghee Sagong
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Do-Yun Kim
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Wan-Ho Cho
- Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon, Korea
| | - Tae Hoon Kong
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soo Hee Oh
- Department of Audiology and Speech Language Pathology, Hallym Univesity of Graduate Studies, Seoul, Korea
| | - In-Ki Jin
- Division of Speech Pathology and Audiology, Research Institute of Audiology and Speech Pathology, College of Natural Sciences, Hallym University, Chuncheon, Korea
| | - Michelle J. Suh
- Department of Otorhinolaryngology, Jeju National University College of Medicine, Jeju, Korea
| | - Hyo-Jeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Seong Jun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dongchul Cha
- Healthcare Lab, Naver Corporation, Seongnam, Korea
- Healthcare Lab, Naver Cloud Corporation, Seongnam, Korea
| | - Kyung-Ho Park
- Department of Otorhinolaryngology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
2
|
Richardson ML, Luo J, Zeng FG. Attention-Modulated Cortical Responses as a Biomarker for Tinnitus. Brain Sci 2024; 14:421. [PMID: 38790400 PMCID: PMC11118879 DOI: 10.3390/brainsci14050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Attention plays an important role in not only the awareness and perception of tinnitus but also its interactions with external sounds. Recent evidence suggests that attention is heightened in the tinnitus brain, likely as a result of relatively local cortical changes specific to deafferentation sites or global changes that help maintain normal cognitive capabilities in individuals with hearing loss. However, most electrophysiological studies have used passive listening paradigms to probe the tinnitus brain and produced mixed results in terms of finding a distinctive biomarker for tinnitus. Here, we designed a selective attention task, in which human adults attended to one of two interleaved tonal (500 Hz and 5 kHz) sequences. In total, 16 tinnitus (5 females) and 13 age- and hearing-matched control (8 females) subjects participated in the study, with the tinnitus subjects matching the tinnitus pitch to 5.4 kHz (range = 1.9-10.8 kHz). Cortical responses were recorded in both passive and attentive listening conditions, producing no differences in P1, N1, and P2 between the tinnitus and control subjects under any conditions. However, a different pattern of results emerged when the difference was examined between the attended and unattended responses. This attention-modulated cortical response was significantly greater in the tinnitus than control subjects: 3.9-times greater for N1 at 5 kHz (95% CI: 2.9 to 5.0, p = 0.007, ηp2 = 0.24) and 3.0 for P2 at 500 Hz (95% CI: 1.9 to 4.5, p = 0.026, ηp2 = 0.17). We interpreted the greater N1 modulation as local neural changes specific to the tinnitus frequency and the greater P2 as global changes to hearing loss. These two cortical measures were used to differentiate between the tinnitus and control subjects, producing 83.3% sensitivity and 76.9% specificity (AUC = 0.81, p = 0.006). These results suggest that the tinnitus brain is more plastic than that of the matched non-tinnitus controls and that the attention-modulated cortical response can be developed as a clinically meaningful biomarker for tinnitus.
Collapse
Affiliation(s)
- Matthew L. Richardson
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
| | - Jiaxin Luo
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
| | - Fan-Gang Zeng
- Department of Otolaryngology—Head and Neck Surgery, University of California at Irvine, Irvine, CA 92697, USA;
- Center for Hearing Research, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA
- Departments of Anatomy and Neurobiology, Cognitive Sciences, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Wertz J, Rüttiger L, Bender B, Klose U, Stark RS, Dapper K, Saemisch J, Braun C, Singer W, Dalhoff E, Bader K, Wolpert SM, Knipper M, Munk MHJ. Differential cortical activation patterns: pioneering sub-classification of tinnitus with and without hyperacusis by combining audiometry, gamma oscillations, and hemodynamics. Front Neurosci 2024; 17:1232446. [PMID: 38239827 PMCID: PMC10794389 DOI: 10.3389/fnins.2023.1232446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 01/22/2024] Open
Abstract
The ongoing controversies about the neural basis of tinnitus, whether linked with central neural gain or not, may hamper efforts to develop therapies. We asked to what extent measurable audiometric characteristics of tinnitus without (T) or with co-occurrence of hyperacusis (TH) are distinguishable on the level of cortical responses. To accomplish this, electroencephalography (EEG) and concurrent functional near-infrared spectroscopy (fNIRS) were measured while patients performed an attentionally demanding auditory discrimination task using stimuli within the individual tinnitus frequency (fTin) and a reference frequency (fRef). Resting-state-fMRI-based functional connectivity (rs-fMRI-bfc) in ascending auditory nuclei (AAN), the primary auditory cortex (AC-I), and four other regions relevant for directing attention or regulating distress in temporal, parietal, and prefrontal cortex was compiled and compared to EEG and concurrent fNIRS activity in the same brain areas. We observed no group differences in pure-tone audiometry (PTA) between 10 and 16 kHz. However, the PTA threshold around the tinnitus pitch was positively correlated with the self-rated tinnitus loudness and also correlated with distress in T-groups, while TH experienced their tinnitus loudness at minimal loudness levels already with maximal suffering scores. The T-group exhibited prolonged auditory brain stem (ABR) wave I latency and reduced ABR wave V amplitudes (indicating reduced neural synchrony in the brainstem), which were associated with lower rs-fMRI-bfc between AAN and the AC-I, as observed in previous studies. In T-subjects, these features were linked with elevated spontaneous and reduced evoked gamma oscillations and with reduced deoxygenated hemoglobin (deoxy-Hb) concentrations in response to stimulation with lower frequencies in temporal cortex (Brodmann area (BA) 41, 42, 22), implying less synchronous auditory responses during active auditory discrimination of reference frequencies. In contrast, in the TH-group gamma oscillations and hemodynamic responses in temporoparietal regions were reversed during active discrimination of tinnitus frequencies. Our findings suggest that T and TH differ in auditory discrimination and memory-dependent directed attention during active discrimination at either tinnitus or reference frequencies, offering a test paradigm that may allow for more precise sub-classification of tinnitus and future improved treatment approaches.
Collapse
Affiliation(s)
- Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Robert S. Stark
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ernst Dalhoff
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katharina Bader
- Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Stephan M. Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Matthias H. J. Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
Yam C, McGovern B, Boyajieff E, Maxwell P, Little K, Sataloff RT. The impact of menopausal status on auditory brainstem responses. Am J Otolaryngol 2024; 45:104067. [PMID: 37778111 DOI: 10.1016/j.amjoto.2023.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE To determine the effect of decreased estrogen levels due to menopause on auditory brainstem response measurements (ABR). STUDY DESIGN Retrospective chart review. SETTING Academic. PATIENTS Pre- and post-menopausal females (pre-M, post-M) and age-matched males. METHODS ABR measurements of wave I, III, and V latencies, and interpeak latencies; amplitudes of waves I, III, V, and V/I ratio. OUTCOME MEASURE Differences in ABR measurements between pre-M and post-M. RESULTS 164 subjects (101 female and 64 male) were included. Post-M had significantly greater latencies (msec) than pre-M of wave V. Post-M had a significantly smaller wave I amplitude (uV) than pre-M. Post-M had a significantly higher wave V/I amplitude ratio than pre-M. Pre-M had significantly shorter latencies than young males for wave III, and wave V. Post-M had significantly shorter latencies than older males at wave III, and wave V. A two-way ANOVA revealed a significant interaction between the effects of age category and gender on V/I amplitude. CONCLUSION Post-M group showed a significant drop in wave I amplitude compared with pre-M group, even in the absence of hearing loss, suggesting that the gender differences in hearing are related to estrogen signaling along the auditory pathway. If wave I amplitude changes between older and younger groups resulted from decreased peripheral hearing sensitivity, we would expect larger drops in amplitude in males since rates of presbycusis are higher. We observed much larger drops in wave I amplitude in females, which cannot be attributed to peripheral hearing loss. These results may assist in understanding gender differences in presbycusis and a possible protective effect of estrogen on the auditory system. Knowledge of gender differences in wave I may be important when ABR is used to assess possible synaptopathy.
Collapse
Affiliation(s)
- Christopher Yam
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Brian McGovern
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Emma Boyajieff
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Philip Maxwell
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Kara Little
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| | - Robert T Sataloff
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America; Senior Associate Dean for Clinical Academic Specialties, Drexel University College of Medicine, United States of America.
| |
Collapse
|
5
|
Bramhall NF, McMillan GP. Perceptual Consequences of Cochlear Deafferentation in Humans. Trends Hear 2024; 28:23312165241239541. [PMID: 38738337 DOI: 10.1177/23312165241239541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Collapse
Affiliation(s)
- Naomi F Bramhall
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Garnett P McMillan
- VA National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
6
|
Colla MDF, Lunardelo PP, Dias FAM. Cochlear synaptopathy and hidden hearing loss: a scoping review. Codas 2023; 36:e20230032. [PMID: 37991055 PMCID: PMC10715634 DOI: 10.1590/2317-1782/20232023032pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/10/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE To identify the pathophysiological definitions adopted by studies investigating "cochlear synaptopathy" (CS) and "hidden hearing loss" (HHL). RESEARCH STRATEGIES The combination of keywords "Auditory Synaptopathy" or "Neuronal Synaptopathy" or "Hidden Hearing Loss" with "etiology" or "causality" or "diagnosis" was used in the databases EMBASE, Pubmed (MEDLINE), CINAHL (EBSCO), and Web of Science. SELECTION CRITERIA Studies that investigated CS or HHL in humans using behavioral and/or electrophysiological procedures were included. DATA ANALYSIS Data analysis and extraction were performed with regard to terminology, definitions, and population. RESULTS 49 articles were included. Of these, 61.2% used the CS terminology, 34.7% used both terms, and 4.1% used HHL. The most-studied conditions were exposure to noise and tinnitus. CONCLUSION CS terminology was used in most studies, referring to the pathophysiological process of deafferentiation between the cochlear nerve fibers and inner hair cells.
Collapse
Affiliation(s)
- Marina de Figueiredo Colla
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| | - Pamela Papile Lunardelo
- Programa de Pós-graduação em Psicobiologia, Universidade de São Paulo de Ribeirão Preto – USP RP - Ribeirão Preto (SP), Brasil.
| | - Fernanda Abalen Martins Dias
- Departamento de Fonoaudiologia, Pontifícia Universidade Católica de Minas Gerais – PUC MG - Belo Horizonte (MG), Brasil.
| |
Collapse
|
7
|
Gómez-Álvarez M, Johannesen PT, Coelho-de-Sousa SL, Klump GM, Lopez-Poveda EA. The Relative Contribution of Cochlear Synaptopathy and Reduced Inhibition to Age-Related Hearing Impairment for People With Normal Audiograms. Trends Hear 2023; 27:23312165231213191. [PMID: 37956654 PMCID: PMC10644751 DOI: 10.1177/23312165231213191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Older people often show auditory temporal processing deficits and speech-in-noise intelligibility difficulties even when their audiogram is clinically normal. The causes of such problems remain unclear. Some studies have suggested that for people with normal audiograms, age-related hearing impairments may be due to a cognitive decline, while others have suggested that they may be caused by cochlear synaptopathy. Here, we explore an alternative hypothesis, namely that age-related hearing deficits are associated with decreased inhibition. For human adults (N = 30) selected to cover a reasonably wide age range (25-59 years), with normal audiograms and normal cognitive function, we measured speech reception thresholds in noise (SRTNs) for disyllabic words, gap detection thresholds (GDTs), and frequency modulation detection thresholds (FMDTs). We also measured the rate of growth (slope) of auditory brainstem response wave-I amplitude with increasing level as an indirect indicator of cochlear synaptopathy, and the interference inhibition score in the Stroop color and word test (SCWT) as a proxy for inhibition. As expected, performance in the auditory tasks worsened (SRTNs, GDTs, and FMDTs increased), and wave-I slope and SCWT inhibition scores decreased with ageing. Importantly, SRTNs, GDTs, and FMDTs were not related to wave-I slope but worsened with decreasing SCWT inhibition. Furthermore, after partialling out the effect of SCWT inhibition, age was no longer related to SRTNs or GDTs and became less strongly related to FMDTs. Altogether, results suggest that for people with normal audiograms, age-related deficits in auditory temporal processing and speech-in-noise intelligibility are mediated by decreased inhibition rather than cochlear synaptopathy.
Collapse
Affiliation(s)
- Marcelo Gómez-Álvarez
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Peter T. Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Sónia L. Coelho-de-Sousa
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Georg M. Klump
- Department of Neuroscience and Cluster of Excellence “Hearing4all”, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Enrique A. Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Special Issue "New Insights into Pathophysiology, Diagnosis and Treatment of Tinnitus". Brain Sci 2022; 12:brainsci12101330. [PMID: 36291264 PMCID: PMC9599459 DOI: 10.3390/brainsci12101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
|
9
|
Objective Detection of Tinnitus Based on Electrophysiology. Brain Sci 2022; 12:brainsci12081086. [PMID: 36009149 PMCID: PMC9406100 DOI: 10.3390/brainsci12081086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Tinnitus, a common disease in the clinic, is associated with persistent pain and high costs to society. Several aspects of tinnitus, such as the pathophysiology mechanism, effective treatment, objective detection, etc., have not been elucidated. Any change in the auditory pathway can lead to tinnitus. At present, there is no clear and unified mechanism to explain tinnitus, and the hypotheses regarding its mechanism include auditory plasticity theory, cortical reorganization theory, dorsal cochlear nucleus hypothesis, etc. Current theories on the mechanism of tinnitus mainly focus on the abnormal activity of the central nervous system. Unfortunately, there is currently a lack of objective diagnostic methods for tinnitus. Developing a method that can detect tinnitus objectively is crucial, only in this way can we identify whether the patient really suffers from tinnitus in the case of cognitive impairment or medical disputes and the therapeutic effect of tinnitus. Electrophysiological investigations have prompted the development of an objective detection of tinnitus by potentials recorded in the auditory pathway. However, there is no objective indicator with sufficient sensitivity and specificity to diagnose tinnitus at present. Based on recent findings of studies with various methods, possible electrophysiological approaches to detect the presence of tinnitus have been summarized. We analyze the change of neural activity throughout the auditory pathway in tinnitus subjects and in patients with tinnitus of varying severity to find available parameters in these methods, which is helpful to further explore the feasibility of using electrophysiological methods for the objective detection of tinnitus.
Collapse
|