1
|
Hussein AFA, Imran WM, Serag I, Abbas A, Mohamed Hammad E, Pastrana-Brandes S, Al-Aish ST, Mahmoud D, Zazo Hassan AM, Ghattas AS, Megali MH, Muthana A, Hashim Almusawi AA, Chaurasia B. Deep brain stimulation (DBS) in movement disorders management: exploring therapeutic efficacy, neurobiological mechanisms, and clinical implications. Ann Med Surg (Lond) 2025; 87:2163-2179. [PMID: 40212163 PMCID: PMC11981253 DOI: 10.1097/ms9.0000000000003096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
Introduction Deep brain stimulation (DBS) has emerged as a promising therapeutic approach, offering targeted neuromodulation for movement disorders refractory to medical management or stereotactic surgery. However, assessing its benefits against potential risks is essential. This meta-analysis aims to evaluate the efficacy and safety of DBS in movement disorders, shedding light on its role as an alternative therapeutic option. Methods A comprehensive search of databases after systemic review yielded studies published in English from 2000 to the present. Data selection, screening, extraction, and risk of bias assessment were performed meticulously. Statistical analysis was conducted using RevMan 2.0, with significant heterogeneity addressed through appropriate methods. Results Our meta-analysis included 40 studies assessing the Unified Parkinson's Disease Rating Scale Part III, revealing a significant improvement in motor symptoms (mean difference [MD]: -18.05, 95% confidence interval [CI] [-20.17, -15.93], P < 0.00001). Hoehn and Yahr Stage analysis demonstrated a reduction in disease severity (MD: -0.58, 95% CI [-1.05, -0.12], P = 0.01). Tremor severity (MD: -8.22, 95% CI [-12.30, -4.15], P < 0.0001), overall tremor (MD: -2.68, 95% CI [-4.59, -0.77], P = 0.006), gait velocity (MD: 0.13, 95% CI [0.08, 0.18], P < 0.00001), and Yale Global Tic Severity Scale score (MD: -9.75, 95% CI [-14.55, -4.96], P < 0.0001) also showed significant improvements with DBS. Conclusion DBS demonstrates efficacy in improving motor symptoms, disease severity, tremor, gait, and tic severity in movement disorders. However, further research is needed to elucidate long-term efficacy and safety outcomes.
Collapse
Affiliation(s)
| | - Wafa Mohammad Imran
- Neurosurgery, University of Buckingham, UK
- King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Ibrahim Serag
- Faculty of Medicine Mansoura University, Mansoura, Egypt
| | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | - Santiago Pastrana-Brandes
- Harvard T. H. Chan School of Public Health, Executive and Continuing Professional Education (ECPE), Boston
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston
| | - Sandra Thair Al-Aish
- Department of Surgery, University of Baghdad, College of Medicine, Baghdad, Iraq
| | - Dina Mahmoud
- Biomedical Sciences at the University of Science and Technology in Zewail City, Zewail City, Egypt
| | | | | | | | - Ahmed Muthana
- Department of Neurosurgery, University of Baghdad, Iraq
| | - Ali Abbas Hashim Almusawi
- Department of Neurosurgery, Hammurabi College of Medicine, Babylon University, Babylon, Iraq
- Harvard T. H. Chan School of Public Health, Executive and Continuing Professional Education (ECPE), Boston
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston
| | - Bipin Chaurasia
- Department of Neurosurgery,Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
2
|
Shen YY, Jethe JV, Reid AP, Hehir J, Amaral MM, Ren C, Hao S, Zhou C, Fisher JAN. Label free, capillary-scale blood flow mapping in vivo reveals that low-intensity focused ultrasound evokes persistent dilation in cortical microvasculature. Commun Biol 2025; 8:12. [PMID: 39762513 PMCID: PMC11704147 DOI: 10.1038/s42003-024-07356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide blood flow to electrically active regions involves a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using an in vivo optical approach, we found that microvasculature, and not larger vessels, exhibit significant persistent dilation following sonication without the use of microbubbles. This finding reveals a heretofore unseen aspect of the effects of FUS in vivo and indicates that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.
Collapse
Affiliation(s)
- YuBing Y Shen
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jyoti V Jethe
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Ashlan P Reid
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Jacob Hehir
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Marcello Magri Amaral
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Biomedical Engineering, Universidade Brasil, San Paulo, SP, Brazil
| | - Chao Ren
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
| | - Senyue Hao
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA
- Imaging Science Ph.D. Program, Washington University in St Louis, St. Louis, MO, USA
- Department of Electrical & Systems Engineering, Washington University in St Louis, St. Louis, MO, USA
| | | |
Collapse
|
3
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
4
|
Mehta RI, Ranjan M, Haut MW, Carpenter JS, Rezai AR. Focused Ultrasound for Neurodegenerative Diseases. Magn Reson Imaging Clin N Am 2024; 32:681-698. [PMID: 39322357 DOI: 10.1016/j.mric.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases are a leading cause of death and disability and pose a looming global public health crisis. Despite progress in understanding biological and molecular factors associated with these disorders and their progression, effective disease modifying treatments are presently limited. Focused ultrasound (FUS) is an emerging therapeutic strategy for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these contexts, applications of FUS include neuroablation, neuromodulation, and/or blood-brain barrier opening with and without facilitated intracerebral drug delivery. Here, the authors review preclinical evidence and current and emerging applications of FUS for neurodegenerative diseases and summarize future directions in the field.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University.
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Marc W Haut
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University
| | - Jeffrey S Carpenter
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Ali R Rezai
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| |
Collapse
|
5
|
Shen Y, Jethe JV, Reid AP, Hehir J, Amaral MM, Ren C, Hao S, Zhou C, Fisher JAN. Label free, capillary-scale blood flow mapping in vivo reveals that low intensity focused ultrasound evokes persistent dilation in cortical microvasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579513. [PMID: 38370686 PMCID: PMC10871316 DOI: 10.1101/2024.02.08.579513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Non-invasive, low intensity focused ultrasound (FUS) is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported. The brain's ability to provide targeted blood flow to electrically active regions involve a multitude of non-neuronal cell types and signaling pathways in the cerebral vasculature; an open question is whether persistent effects can be attributed, at least partly, to vascular mechanisms. Using a novel in vivo optical approach, we found that microvascular responses, unlike larger vessels which prior investigations have explored, exhibit persistent dilation following sonication without the use of microbubbles. This finding and approach offers a heretofore unseen aspect of the effects of FUS in vivo and indicate that concurrent changes in neurovascular function may partially underly persistent neuromodulatory effects.
Collapse
|
6
|
Muleiro Alvarez M, Cano-Herrera G, Osorio Martínez MF, Vega Gonzales-Portillo J, Monroy GR, Murguiondo Pérez R, Torres-Ríos JA, van Tienhoven XA, Garibaldi Bernot EM, Esparza Salazar F, Ibarra A. A Comprehensive Approach to Parkinson's Disease: Addressing Its Molecular, Clinical, and Therapeutic Aspects. Int J Mol Sci 2024; 25:7183. [PMID: 39000288 PMCID: PMC11241043 DOI: 10.3390/ijms25137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.
Collapse
Affiliation(s)
- Mauricio Muleiro Alvarez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Gabriela Cano-Herrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - María Fernanda Osorio Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | | | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Renata Murguiondo Pérez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Jorge Alejandro Torres-Ríos
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ximena A. van Tienhoven
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Ernesto Marcelo Garibaldi Bernot
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Campus México Norte, Huixquilucan 52786, Mexico
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México 11200, Mexico
| |
Collapse
|
7
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
8
|
Evancho A, Tyler WJ, McGregor K. A review of combined neuromodulation and physical therapy interventions for enhanced neurorehabilitation. Front Hum Neurosci 2023; 17:1151218. [PMID: 37545593 PMCID: PMC10400781 DOI: 10.3389/fnhum.2023.1151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Rehabilitation approaches for individuals with neurologic conditions have increasingly shifted toward promoting neuroplasticity for enhanced recovery and restoration of function. This review focuses on exercise strategies and non-invasive neuromodulation techniques that target neuroplasticity, including transcranial magnetic stimulation (TMS), vagus nerve stimulation (VNS), and peripheral nerve stimulation (PNS). We have chosen to focus on non-invasive neuromodulation techniques due to their greater potential for integration into routine clinical practice. We explore and discuss the application of these interventional strategies in four neurological conditions that are frequently encountered in rehabilitation settings: Parkinson's Disease (PD), Traumatic Brain Injury (TBI), stroke, and Spinal Cord Injury (SCI). Additionally, we discuss the potential benefits of combining non-invasive neuromodulation with rehabilitation, which has shown promise in accelerating recovery. Our review identifies studies that demonstrate enhanced recovery through combined exercise and non-invasive neuromodulation in the selected patient populations. We primarily focus on the motor aspects of rehabilitation, but also briefly address non-motor impacts of these conditions. Additionally, we identify the gaps in current literature and barriers to implementation of combined approaches into clinical practice. We highlight areas needing further research and suggest avenues for future investigation, aiming to enhance the personalization of the unique neuroplastic responses associated with each condition. This review serves as a resource for rehabilitation professionals and researchers seeking a comprehensive understanding of neuroplastic exercise interventions and non-invasive neuromodulation techniques tailored for specific diseases and diagnoses.
Collapse
Affiliation(s)
- Alexandra Evancho
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J. Tyler
- Department of Biomedical Engineering, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keith McGregor
- Department of Clinical and Diagnostic Studies, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Tsehay Y, Zeng Y, Weber-Levine C, Awosika T, Kerensky M, Hersh AM, Ou Z, Jiang K, Bhimreddy M, Bauer SJ, Theodore JN, Quiroz VM, Suk I, Alomari S, Sun J, Tong S, Thakor N, Doloff JC, Theodore N, Manbachi A. Low-Intensity Pulsed Ultrasound Neuromodulation of a Rodent's Spinal Cord Suppresses Motor Evoked Potentials. IEEE Trans Biomed Eng 2023; 70:1992-2001. [PMID: 37018313 PMCID: PMC10510849 DOI: 10.1109/tbme.2022.3233345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals. METHODS Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes. RESULTS Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p < 0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials. CONCLUSION LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication. SIGNIFICANCE LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.
Collapse
|
10
|
Fründt O, Hanff AM, Möhl A, Mai T, Kirchner C, Amouzandeh A, Buhmann C, Krüger R, Südmeyer M. Device-Aided Therapies in Parkinson's Disease-Results from the German Care4PD Study. Brain Sci 2023; 13:brainsci13050736. [PMID: 37239208 DOI: 10.3390/brainsci13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Data on the use of device-aided therapies (DATs) in people with Parkinson's disease (PwP) are scarce. Analyzing data from the Care4PD patient survey, we (1) evaluated application frequency and type of DAT in a larger, nationwide, cross-sectoral PwP sample in Germany; (2) analyzed the frequency of symptoms indicative for advanced PD (aPD) and need for DAT amongst the remaining patients and (3) compared the most bothersome symptoms and need for professional long-term care (LTC) of patients with and without suspected aPD. Data from 1269 PwP were analyzed. In total, 153 PwP (12%) received DAT, mainly deep brain stimulation (DBS). Of the remaining 1116 PwP without DAT, >50% fulfilled at least one aPD criterion. Akinesia/rigidity and autonomic problems were most bothersome for PwP with and without suspected aPD, with more tremor in the non-aPD and more motor fluctuations and falls in the aPD group. To recapitulate, the German DAT application rate is rather low, although a large proportion of PwP fulfills aPD criteria indicating a need for intensified treatment strategies. Many reported bothersome symptoms could be overcome with DAT with benefits even for LTC patients. Thus, precise and early identification of aPD symptoms (and therapy-resistant tremor) should be implemented in future DAT preselection tools and educational trainings.
Collapse
Affiliation(s)
- Odette Fründt
- Department of Neurology, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Anne-Marie Hanff
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Belval Campus, Maison du Savoir, 2 Avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Postbus 5800, 6202 AZ Maastricht, The Netherlands
| | - Annika Möhl
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tobias Mai
- Department of Nursing Development/Nursing Research, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Christiane Kirchner
- Department of Neurology, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Ali Amouzandeh
- Department of Neurology, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), 4 Rue Nicolas Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Martin Südmeyer
- Department of Neurology, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
- Department of Neurology, University Medical Center Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Lu H, Wang X, Lou X. Current applications for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease. Chin Med J (Engl) 2023; 136:780-787. [PMID: 36914938 PMCID: PMC10150909 DOI: 10.1097/cm9.0000000000002319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 03/16/2023] Open
Abstract
ABSTRACT Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel and minimally invasive technology. Since the US Food and Drug Administration approved unilateral ventral intermediate nucleus-MRgFUS for medication-refractory essential tremor in 2016, studies on new indications, such as Parkinson's disease (PD), psychiatric diseases, and brain tumors, have been on the rise, and MRgFUS has become a promising method to treat such neurological diseases. Currently, as the second most common degenerative disease, PD is a research hotspot in the field of MRgFUS. The actions of MRgFUS on the brain range from thermoablation, blood-brain barrier (BBB) opening, to neuromodulation. Intensity is a key determinant of ultrasound actions. Generally, high intensity can be used to precisely thermoablate brain targets, whereas low intensity can be used as molecular therapies to modulate neuronal activity and open the BBB in conjunction with injected microbubbles. Here, we aimed to summarize advances in the application of MRgFUS for the treatment of PD, with a focus on thermal ablation, BBB opening, and neuromodulation, in the hope of informing clinicians of current applications.
Collapse
Affiliation(s)
- Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| | - Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing 100853, China
| |
Collapse
|
12
|
Clennell B, Steward TGJ, Hanman K, Needham T, Benachour J, Jepson M, Elley M, Halford N, Heesom K, Shin E, Molnár E, Drinkwater BW, Whitcomb DJ. Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. Brain Stimul 2023; 16:540-552. [PMID: 36731773 DOI: 10.1016/j.brs.2023.01.1674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Focused ultrasound stimulation (FUS) has the potential to provide non-invasive neuromodulation of deep brain regions with unparalleled spatial precision. However, the cellular and molecular consequences of ultrasound stimulation on neurons remains poorly understood. We previously reported that ultrasound stimulation induces increases in neuronal excitability that persist for hours following stimulation in vitro. In the present study we sought to further elucidate the molecular mechanisms by which ultrasound regulates neuronal excitability and synaptic function. OBJECTIVES To determine the effect of ultrasound stimulation on voltage-gated ion channel function and synaptic plasticity. METHODS Primary rat cortical neurons were exposed to a 40 s, 200 kHz pulsed ultrasound stimulus or sham-stimulus. Whole-cell patch clamp electrophysiology, quantitative proteomics and high-resolution confocal microscopy were employed to determine the effects of ultrasound stimulation on molecular regulators of neuronal excitability and synaptic function. RESULTS We find that ultrasound exposure elicits sustained but reversible increases in whole-cell potassium currents. In addition, we find that ultrasound exposure activates synaptic signalling cascades that result in marked increases in excitatory synaptic transmission. Finally, we demonstrate the requirement of ionotropic glutamate receptor (AMPAR/NMDAR) activation for ultrasound-induced modulation of neuronal potassium currents. CONCLUSION These results suggest specific patterns of pulsed ultrasound can induce contemporaneous enhancement of both neuronal excitability and synaptic function, with implications for the application of FUS in experimental and therapeutic settings. Further study is now required to deduce the precise molecular mechanisms through which these changes occur.
Collapse
Affiliation(s)
- Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Tom G J Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Kaliya Hanman
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Tom Needham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Janette Benachour
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark Jepson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Meg Elley
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Nathan Halford
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK
| | - Kate Heesom
- Proteomics Facility Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Eunju Shin
- School of Life Sciences, Keele University, ST5 5BG, UK
| | - Elek Molnár
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, BS1 3NY, UK.
| |
Collapse
|
13
|
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex. Int J Mol Sci 2023; 24:ijms24032578. [PMID: 36768901 PMCID: PMC9917173 DOI: 10.3390/ijms24032578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague-Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338-12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications.
Collapse
|