1
|
Brokāns A, Dolgopolova J, Saulītis A, Spulle U, Rancāns K, Meiers D, Hasnere S, Balodis A. Optic Nerve Glioblastoma with Optic Chiasm Involvement: A Case Report and a Brief Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1687. [PMID: 39459474 PMCID: PMC11509173 DOI: 10.3390/medicina60101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Background: optic nerve glioblastoma is an uncommon pathology. The optic chiasm, optic tract, or optic nerves are possible places from which the tumor can originate. Most of the neuroimaging findings are nonspecific. To confirm the diagnosis, a biopsy is required. A delay to the treatment plan for optic nerve glioblastoma results in poor patient survival rates. Case report: a 68-year-old woman with an uncomplicated medical history presented with exophthalmos, deteriorating eyesight, and partial loss of vision. Using radiological data together with postoperative histopathological and histochemical analysis, optic nerve glioblastoma, IDH-wildtype, with optic chiasm involvement was diagnosed. Conclusion: optic nerve glioblastoma is a rare and aggressive form of cancer that affects the optic nerve, leading to significant vision impairment and potentially life-threatening complications. Treatment options are restricted and difficult because of the location and nature of the condition; surgery, radiation therapy, and chemotherapy are frequently needed as part of a multidisciplinary approach.
Collapse
Affiliation(s)
- Artis Brokāns
- Department of Radiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| | - Jūlija Dolgopolova
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Agnis Saulītis
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Uldis Spulle
- Department of Oral and Maxillofacial Surgery, RSU Institute of Stomatology, LV-1007 Riga, Latvia;
| | - Kristaps Rancāns
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia; (J.D.); (A.S.); (K.R.)
| | - Dairis Meiers
- Department of Ophthalmology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia;
| | - Sigita Hasnere
- Department of Oncology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia;
| | - Arturs Balodis
- Department of Radiology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, 13 Pilsonu Street, LV-1002 Riga, Latvia
| |
Collapse
|
2
|
Liu P, Zeng YP, Qu H, Zheng WY, Zhou TX, Hang LF, Jiang GH. Multiparametric simultaneous hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18F-FDG PET/MRI) incorporating intratumoral and peritumoral regions for grading of glioma. Quant Imaging Med Surg 2024; 14:5665-5681. [PMID: 39144048 PMCID: PMC11320556 DOI: 10.21037/qims-24-280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024]
Abstract
Background Preoperative grading gliomas is essential for therapeutic clinical decision-making. Current non-invasive imaging modality for glioma grading were primarily focused on magnetic resonance imaging (MRI) or positron emission tomography (PET) of the tumor region. However, these methods overlook the peritumoral region (PTR) of tumor and cannot take full advantage of the biological information derived from hybrid-imaging. Therefore, we aimed to combine multiparameter from hybrid 18F-fluorodeoxyglucose (18F-FDG) PET/MRI of the solid component and PTR were combined for differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Methods A total of 76 patients with pathologically confirmed glioma (41 HGG and 35 LGG) who underwent simultaneous 18F-FDG PET, arterial spin labelling (ASL), and diffusion-weighted imaging (DWI) with hybrid PET/MRI were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative cerebral blood flow (rCBF), and relative minimum apparent diffusion coefficient (rADCmin) for the solid component and PTR at different distances outside tumoral border were compared. Receiver operating characteristic (ROC) curves were applied to assess the grading performance. A nomogram for HGG prediction was constructed. Results HGGs displayed higher rSUVmax and rCBF but lower rADCmin in the solid component and 5 mm-adjacent PTR, lower rADCmin in 10 mm-adjacent PTR, and higher rCBF in 15- and 20-mm-adjacent PTR. rSUVmax in solid component performed best [area under the curve (AUC) =0.865] as a single parameter for grading. Combination of rSUVmax in the solid component and adjacent 20 mm performed better (AUC =0.881). Integration of all 3 indicators in the solid component and adjacent 20 mm performed the best (AUC =0.928). The nomogram including rSUVmax, rCBF, and rADCmin in the solid component and 5-mm-adjacent PTR predicted HGG with a concordance index (C-index) of 0.906. Conclusions Multiparametric 18F-FDG PET/MRI from the solid component and PTR performed excellently in differentiating HGGs from LGGs. It can be used as a non-invasive and effective tool for preoperative grade stratification of patients with glioma, and can be considered in clinical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Yu-Ping Zeng
- Department of Medical Imaging, Ganzhou People’s Hospital, Ganzhou, China
- Department of Nuclear Medicine, Guangzhou Universal Medical Imaging Diagnostic Center, Guangzhou, China
| | - Hong Qu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Wan-Yi Zheng
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Tian-Xing Zhou
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Feng Hang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Gui-Hua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Cuccia F, Jafari F, D’Alessandro S, Carruba G, Craparo G, Tringali G, Blasi L, Ferrera G. Preferred Imaging for Target Volume Delineation for Radiotherapy of Recurrent Glioblastoma: A Literature Review of the Available Evidence. J Pers Med 2024; 14:538. [PMID: 38793120 PMCID: PMC11122491 DOI: 10.3390/jpm14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Recurrence in glioblastoma lacks a standardized treatment, prompting an exploration of re-irradiation's efficacy. METHODS A comprehensive systematic review from January 2005 to May 2023 assessed the role of MRI sequences in recurrent glioblastoma re-irradiation. The search criteria, employing MeSH terms, targeted English-language, peer-reviewed articles. The inclusion criteria comprised both retrospective and prospective studies, excluding certain types and populations for specificity. The PICO methodology guided data extraction, and the statistical analysis employed Chi-squared tests via MedCalc v22.009. RESULTS Out of the 355 identified studies, 81 met the criteria, involving 3280 patients across 65 retrospective and 16 prospective studies. The key findings indicate diverse treatment modalities, with linac-based photons predominating. The median age at re-irradiation was 54 years, and the median time interval between radiation courses was 15.5 months. Contrast-enhanced T1-weighted sequences were favored for target delineation, with PET-imaging used in fewer studies. Re-irradiation was generally well tolerated (median G3 adverse events: 3.5%). The clinical outcomes varied, with a median 1-year local control rate of 61% and a median overall survival of 11 months. No significant differences were noted in the G3 toxicity and clinical outcomes based on the MRI sequence preference or PET-based delineation. CONCLUSIONS In the setting of recurrent glioblastoma, contrast-enhanced T1-weighted sequences were preferred for target delineation, allowing clinicians to deliver a safe and effective therapeutic option; amino acid PET imaging may represent a useful device to discriminate radionecrosis from recurrent disease. Future investigations, including the ongoing GLIAA, NOA-10, ARO 2013/1 trial, will aim to refine approaches and standardize methodologies for improved outcomes in recurrent glioblastoma re-irradiation.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| | - Fatemeh Jafari
- Radiation Oncology Department, Imam-Khomeini Hospital Complex, Teheran University of Medical Sciences, Teheran 1416634793, Iran
| | | | - Giuseppe Carruba
- Division of Internationalization and Health Research (SIRS), ARNAS Civico Hospital, 90100 Palermo, Italy
| | | | | | - Livio Blasi
- Medical Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy;
| | - Giuseppe Ferrera
- Radiation Oncology, ARNAS Civico Hospital, 90100 Palermo, Italy (G.F.)
| |
Collapse
|
4
|
Lo Greco MC, Milazzotto R, Liardo RLE, Foti PV, Palmucci S, Basile A, Pergolizzi S, Spatola C. The Role of Reirradiation in Childhood Progressive Diffuse Intrinsic Pontine Glioma (DIPG): An Ongoing Challenge beyond Radiobiology. Brain Sci 2023; 13:1449. [PMID: 37891817 PMCID: PMC10605436 DOI: 10.3390/brainsci13101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the clinical impact of multiple courses of irradiation on pediatric patients with progressive diffuse intrinsic pontine glioma (DIPG), we conducted a retrospective case series on three children treated at our institution from 2018 to 2022. All children were candidates to receive systemic therapy with vinorelbine and nimotuzumab. Radiotherapy was administered to a total dose of 54 Gy. At any disease progression, our local tumor board evaluated the possibility of offering a new course of radiotherapy. To determine feasibility and assess toxicity rates, all children underwent clinical and hematological evaluation both during and after the treatment. To assess efficacy, all children performed contrast-enhanced MRI almost quarterly after the end of the treatment. In all children, following any treatment course, neurological improvement (>80%) was associated with a radiological response (41.7-46%). The longest overall survival (24 months) was observed in the child who underwent three courses of radiotherapy, without experiencing significant side effects. Even though it goes beyond the understanding of conventional radiobiology, first and second reirradiation in pediatric patients with progressive DIPG may represent a feasible and safe approach, capable of increasing overall survival and disease-free survival in selected patients and improving their quality of life.
Collapse
Affiliation(s)
- Maria Chiara Lo Greco
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Roberto Milazzotto
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Rocco Luca Emanuele Liardo
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Pietro Valerio Foti
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Palmucci
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Antonio Basile
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Corrado Spatola
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| |
Collapse
|
5
|
Ren J, Zhai X, Yin H, Zhou F, Hu Y, Wang K, Yan R, Han D. Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma. Neurol Ther 2023; 12:1729-1743. [PMID: 37488335 PMCID: PMC10444917 DOI: 10.1007/s40120-023-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
INTRODUCTION Conventional magnetic resonance imaging (MRI) features have difficulty distinguishing glioma true tumor recurrence (TuR) from treatment-related effects (TrE). We aimed to develop a machine-learning model based on multimodality MRI radiomics to help improve the efficiency of identifying glioma TuR. METHODS A total of 131 patients were enrolled and randomly divided into the training set (n = 91) and the test set (n = 40). Radiomic features were extracted from the postoperative enhancement (PoE) region and edema (ED) region from four routine MRI sequences. After analyses of Spearman's rank correlation coefficient, and least absolute shrinkage and selection operator, the key radiomic features were selected to construct support vector machine (SVM) and k-nearest neighbor (KNN) models. Decision curve analysis (DCA) and receiver operating characteristic (ROC) curves were used to analyze the performance. RESULTS The PoE model had a significantly higher area under curve (AUC) than the ED model (p < 0.05). Among the models constructed with a single sequence, the model using PoE regional features from CE-T1WI was superior to other models, with an AUC of 0.905 for SVM and 0.899 for KNN. In multimodality models, the PoE model outperformed the ED model with an AUC of 0.931 for SVM and 0.896 for KNN. The multimodality model, which combined routine sequences and the whole regional features, showed a slightly better performance with an AUC of 0.965 for SVM and 0.955 for KNN. Decision curve analysis showed the good clinical utility of multimodal radiomics models. CONCLUSIONS Multimodality radiomics can identify glioma TuR and TrE, potentially aiding clinical decision-making for individualized treatment. And edematous regions may provide useful information for recognizing recurrence. RETROSPECTIVELY REGISTERED 2021.04.15, No:2020039.
Collapse
Affiliation(s)
- Jinfa Ren
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Xiaoyang Zhai
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Huijia Yin
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Fengmei Zhou
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Ying Hu
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Ruifang Yan
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China
| | - Dongming Han
- Department of MR, The First Affiliated Hospital of Xinxiang Medical University, No.88 Health Road, Weihui, 453100, China.
| |
Collapse
|
6
|
Altieri R. Editorial: Frontiers in Neuro Oncology and Neurosurgery. Brain Sci 2023; 13:brainsci13040565. [PMID: 37190530 DOI: 10.3390/brainsci13040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in our knowledge and treatments, Central Nervous System (CNS) Tumors remain the most difficult clinical challenge for the worldwide medical community [...]
Collapse
|
7
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
8
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|