1
|
Sheng X, Li X, Qian Y, Wang S, Xiao C. ETS1 regulates NDRG1 to promote the proliferation, migration, and invasion of OSCC. Oral Dis 2024; 30:977-990. [PMID: 36718855 DOI: 10.1111/odi.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/31/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the molecular mechanism by which the transcription factor ETS1 regulates N-myc downstream regulatory gene 1 (NDRG1) to provide a new theoretical basis for the study of oral squamous cell carcinoma (OSCC). METHODS In this study, eight human OSCC and paraneoplastic samples were collected. The expressions of NDRG1, ETS1, and Ki67 were detected by immunohistochemistry; apoptosis was detected by tdt-mediated dUTP notched end labeling; cell migration and invasion were detected by Transwell; quantitative real-time PCR was performed to detect the expression of NDRG1; RNA-binding protein immunoprecipitation (RIP) assays detected NDRG1 expression; immunofluorescence assays detected ETS1 expression. RESULTS NDRG1 and ETS1 expression was significantly upregulated in cancer tissues and CAL-27 and SCC-6 cells. Knockdown of NDRG1 and ETS1 inhibited cell proliferation, migration, invasion, cloning, and EMT while promoting apoptosis and inhibited tumor development; ETS1 positively regulated NDRG1 expression; Finally, overexpression of NDRG1 in vivo and in vitro reversed the effect of ETS1 knockdown on CAL-27 and SCC-6 cells. CONCLUSIONS ETS1 positively regulates the expression of NDRG1 and promotes OSCC. Therefore, ETS1 may serve as a new target for the clinical diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Xun Sheng
- School of Medicine, Yunnan University, Kunming, China
| | - Xudong Li
- Department of Prosthodontics of Kunming Medical University, Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery of Kunming Medical University, Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Shuhui Wang
- Department of General Dentistry of Kunming Medical University, Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Liu Y, Luo Y, Shi X, Lu Y, Li H, Fu G, Li X, Shan L. Role of KLF4/NDRG1/DRP1 axis in hypoxia-induced pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023:166794. [PMID: 37356737 DOI: 10.1016/j.bbadis.2023.166794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya Lu
- Department of Respiratory Disease, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
3
|
Li J, Tan R, Wu J, Guo W, Wang Y, You G, Zhang Y, Yu Z, Geng Y, Zan J, Su J. A cellular senescence-related genes model allows for prognosis and treatment stratification of hepatocellular carcinoma: A bioinformatics analysis and experimental verification. Front Genet 2023; 13:1099148. [PMID: 36712870 PMCID: PMC9877353 DOI: 10.3389/fgene.2022.1099148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with low 5-year survival rate. Cellular senescence, characterized by permanent and irreversible cell proliferation arrest, plays an important role in tumorigenesis and development. This study aims to develop a cellular senescence-based stratified model, and a multivariable-based nomogram for guiding clinical therapy for HCC. Materials and methods: The mRNAs expression data of HCC patients and cellular senescence-related genes were obtained from TCGA and CellAge database, respectively. Through multiple analysis, a four cellular senescence-related genes-based prognostic stratified model was constructed and its predictive performance was validated through various methods. Then, a nomogram based on the model was constructed and HCC patients stratified by the model were analyzed for tumor mutation burden, tumor microenvironment, immune infiltration, drug sensitivity and immune checkpoint. Functional enrichment analysis was performed to explore potential biological pathways. Finally, we verified this model by siRNA transfection, scratch assay and Transwell Assay. Results: We established an cellular senescence-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of HCC patients in the ICGC database. The low and high risk score HCC patients stratified by the model showed different tumor mutation burden, tumor microenvironment, immune infiltration, drug sensitivity and immune checkpoint expressions. Functional enrichment analysis suggested several biological pathways related to the process and prognosis of HCC. Scratch assay and transwell assay indicated the promotion effects of the four cellular senescence-related genes (EZH2, G6PD, CBX8, and NDRG1) on the migraiton and invasion of HCC. Conclusion: We established a cellular senescence-based stratified model, and a multivariable-based nomogram, which could predict the survival of HCC patients and guide clinical treatment.
Collapse
Affiliation(s)
- Jiaming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China,Department of Pharmacy, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Rongzhi Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yan Geng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China,*Correspondence: Jianfen Su, ; Jie Zan,
| | - Jianfen Su
- Department of Pharmacy, Guangzhou Panyu Central Hospital, Guangzhou, China,*Correspondence: Jianfen Su, ; Jie Zan,
| |
Collapse
|
4
|
Zhang X, Chen Q, Li Y, Chen H, Jiang Q, Hu Q. N-myc Downstream-Regulated Gene 1 (NDRG1) Regulates Vascular Endothelial Growth Factor A (VEGFA) and Malignancies in Glioblastoma Multiforme (GBM). BIOMED RESEARCH INTERNATIONAL 2022; 2022:3233004. [PMID: 35813230 PMCID: PMC9262576 DOI: 10.1155/2022/3233004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
Background NDRG1 has been reported to exhibit relatively low expression levels in glioma tissues compared with adjacent brain tissues. Additionally, NDRG1 is reported to be a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. However, its exact roles in GBM are still unknown. Methods Gene Expression Profiling Interactive Analysis (GEPIA) was employed to evaluate the expression level of NDRG1 in GBM. After the introduction of NDRG1, proliferation, analyses of colony formation, migration, and invasion capacities were performed. A luciferase reporter assay was performed to detect the effect of NDRG1 on the vascular endothelial growth factor A (VEGFA) promoter. Results In this study, data from GBM and healthy individuals were retrospectively collected by employing GBM, and VEGFA was found to be differentially expressed in GBM tissues compared with adjacent brain tissues. Furthermore, NDRG1 expression is positively correlated with VEGFA expression, but not expression of the other two VEGF isoforms, VEGFB and VEGFC. In the glioma cell lines U87MG and U118, overexpression of NDRG1 significantly upregulated VEGFA. By performing a dual-luciferase reporter assay, it was observed that overexpressed NDRG1 transcriptionally activated VEGFA. Expectedly, overexpression of NDRG1 decreased cell viability by blocking cell cycle phases at G1 phase. Additionally, overexpression of NDRG1 inhibited invasion, colony formation, and tumor formation in soft agar. Remarkably, VEGFA silencing or blockade of VEGF receptor 2 (VEGFR2) further inhibited malignant behaviors in soft agar, including proliferation, invasion, colony formation, and tumor formation. Conclusions NDRG1-induced VEGFA exerts protective effects in GBM via the VEGFA/VEGFR2 pathway. Therefore, targeting both NDRG1 and VEGFA may represent a novel therapy for the treatment of GBM.
Collapse
Affiliation(s)
- Xufan Zhang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan Province, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan Province, China
| | - Qian Chen
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan Province, China
| | - Yuchen Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan Province, China
| | - Hongqing Chen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 Sichuan Province, China
| | - Qin Jiang
- Department of Laboratory Medicine, Hospital of Mianyang Traditional Chinese Medicine, Mianyang, 621000 Sichuan Province, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan Province, China
| |
Collapse
|