1
|
Cook R, Chennell Dutton N, Silburn PA, Meagher LJ, Fracchia G, Anderson N, Cooper G, Dinh HM, Cook SJ, Silberstein P. Minimising the rate of vascular complications in Deep Brain Stimulation surgery for the management of Parkinson's disease: a single-centre 600-patient case series. BMJ Neurol Open 2024; 6:e000793. [PMID: 39493675 PMCID: PMC11529736 DOI: 10.1136/bmjno-2024-000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Deep Brain Stimulation (DBS) is an effective, yet underused therapy for people living with Parkinson's disease (PD) in whom tremor, motor fluctuations and/or dyskinesia are not satisfactorily controlled by oral medical therapy. Fear of vascular complications related to the operative procedure remains a strong reason for both the referrer and patient reluctance. We review the incidence of vascular complications in the first 600 patients with Parkinson's disease treated at our centre by a single neurologist/neurosurgical team. Methods Surgical data routinely collected for patients who underwent DBS implantation for the management of PD between the years 2001-2023 was retrospectively reviewed. Incidences of vascular complication were analysed in detail, examining causal factors. Results Including reimplantations, 600 consecutive DBS patients underwent implantation with 1222 DBS electrodes. Three patients (0.50%) experienced vascular complications. Conclusion This vascular complication rate is at the low end of that reported in the literature. Risk mitigation strategies discussed include a consistent neurosurgical team, dual methodology target and trajectory planning, control of cerebrospinal fluid egress during the procedure, use of a specialised microelectrode recording (MER)/macrostimulation electrode without an introducing brain cannula and low number of MER passes. A reduced vascular complication rate may improve the acceptability of DBS therapy for both patients and referrers.
Collapse
Affiliation(s)
- Raymond Cook
- Neurosurgery, North Shore Private Hospital, Sydney, NSW, Australia
- Neurosurgery, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Peter A Silburn
- Movement Neuroscience Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Linton J Meagher
- Neuropsychiatry, North Shore Private Hospital, Sydney, NSW, Australia
| | - George Fracchia
- Neurosurgery, North Shore Private Hospital, Sydney, NSW, Australia
| | - Nathan Anderson
- Radiology, North Shore Private Hospital, Sydney, New South Wales, Australia
| | - Glen Cooper
- Radiology, North Shore Private Hospital, Sydney, New South Wales, Australia
| | - Hoang-Mai Dinh
- Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | | | - Paul Silberstein
- Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Neurology, North Shore Private Hospital, Sydney, NSW, Australia
| |
Collapse
|
2
|
Monfaredi R, Concepcion-Gonzalez A, Acosta Julbe J, Fischer E, Hernandez-Herrera G, Cleary K, Oluigbo C. Automatic Path-Planning Techniques for Minimally Invasive Stereotactic Neurosurgical Procedures-A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:5238. [PMID: 39204935 PMCID: PMC11359713 DOI: 10.3390/s24165238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
This review systematically examines the recent research from the past decade on diverse path-planning algorithms tailored for stereotactic neurosurgery applications. Our comprehensive investigation involved a thorough search of scholarly papers from Google Scholar, PubMed, IEEE Xplore, and Scopus, utilizing stringent inclusion and exclusion criteria. The screening and selection process was meticulously conducted by a multidisciplinary team comprising three medical students, robotic experts with specialized knowledge in path-planning techniques and medical robotics, and a board-certified neurosurgeon. Each selected paper was reviewed in detail, and the findings were synthesized and reported in this review. The paper is organized around three different types of intervention tools: straight needles, steerable needles, and concentric tube robots. We provide an in-depth analysis of various path-planning algorithms applicable to both single and multi-target scenarios. Multi-target planning techniques are only discussed for straight tools as there is no published work on multi-target planning for steerable needles and concentric tube robots. Additionally, we discuss the imaging modalities employed, the critical anatomical structures considered during path planning, and the current status of research regarding its translation to clinical human studies. To the best of our knowledge and as a conclusion from this systematic review, this is the first review paper published in the last decade that reports various path-planning techniques for different types of tools for minimally invasive neurosurgical applications. Furthermore, this review outlines future trends and identifies existing technology gaps within the field. By highlighting these aspects, we aim to provide a comprehensive overview that can guide future research and development in path planning for stereotactic neurosurgery, ultimately contributing to the advancement of safer and more effective neurosurgical procedures.
Collapse
Affiliation(s)
- Reza Monfaredi
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Pediatrics and Radiology, George Washington University, Washington, DC 20037, USA
| | - Alondra Concepcion-Gonzalez
- School of Medicine and Health Sciences, George Washington University School of Medicine, Washington, DC 20052, USA;
| | - Jose Acosta Julbe
- Department of Orthopaedic Surgery & Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Elizabeth Fischer
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
| | | | - Kevin Cleary
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Pediatrics and Radiology, George Washington University, Washington, DC 20037, USA
| | - Chima Oluigbo
- Sheikh Zayed Institute of Pediatrics Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (E.F.); (K.C.)
- Department of Neurology and Pediatrics, George Washington University School of Medicine, Washington, DC 20052, USA
| |
Collapse
|
3
|
Mayer R, Desai K, Aguiar RSDT, McClure JJ, Kato N, Kalman C, Pilitsis JG. Evolution of Deep Brain Stimulation Techniques for Complication Mitigation. Oper Neurosurg (Hagerstown) 2024; 27:148-157. [PMID: 38315020 DOI: 10.1227/ons.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024] Open
Abstract
Complication mitigation in deep brain stimulation has been a topic matter of much discussion in the literature. In this article, we examine how neurosurgeons as individuals and as a field generated and adapted techniques to prevent infection, lead fracture/lead migration, and suboptimal outcomes in both the acute period and longitudinally. The authors performed a MEDLINE search inclusive of articles from 1987 to June 2023 including human studies written in English. Using the Rayyan platform, two reviewers (J.P. and R.M.) performed a title screen. Of the 776 articles, 252 were selected by title screen and 172 from abstract review for full-text evaluation. Ultimately, 124 publications were evaluated. We describe the initial complications and inefficiencies at the advent of deep brain stimulation and detail changes instituted by surgeons that reduced them. Furthermore, we discuss the trend in both undesired short-term and long-term outcomes with emphasis on how surgeons recognized and modified their practice to provide safer and better procedures. This scoping review adds to the literature as a guide to both new neurosurgeons and seasoned neurosurgeons alike to understand better what innovations have been trialed over time as we embark on novel targets and neuromodulatory technologies.
Collapse
Affiliation(s)
- Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Somma T, Bove I, Vitulli F, Solari D, Bocchino A, Palmiero C, Scala MR, Zoia C, Cappabianca P, Esposito F. Gender gap in deep brain stimulation for Parkinson's disease: preliminary results of a retrospective study. Neurosurg Rev 2024; 47:63. [PMID: 38263479 PMCID: PMC10806036 DOI: 10.1007/s10143-024-02290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment of PD for both women and men. However, discussions have been reported about the impact of STN-DBS surgery in PD. The aim of our study is to identify differences between men and women in terms of pre- and post-DBS symptoms and try to explain the possible causes. In the current study, we evaluated the gender impact on STN-DBS in PD at the Department of Neurosurgery of University of Naples "Federico II" from 2013 to 2021. Motor and non-motor symptoms were evaluated. To compare the data before and after surgery and between the genders, Wilcoxon-Mann-Whitney tests were performed. A total of 43 patients with PD were included; of them, 17 (39%) were female. Baseline evaluation revealed no gender differences in the age of onset (p = 0.87). Not significant differences were noted in the Unified Parkinson's Disease Rating Scale (UPDRS) pre-surgery score, but if we consider UPDRS subscores of motor examination, significant clinical improvement was reported in both male and female in terms of UPDRS pre- and post-surgery (p < 0.001). STN-DBS is a highly effective treatment for motor and non-motor symptoms of PD for both women and men but our study hints towards gender-specific outcomes in motor domains. Improving our knowledge in this field can allow us to implement strategies to identify new directions in the development of an adequate treatment of PD in terms of surgical intervention and in consideration of the gender.
Collapse
Affiliation(s)
- Teresa Somma
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Ilaria Bove
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy.
| | - Francesca Vitulli
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Domenico Solari
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Andrea Bocchino
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Carmela Palmiero
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Maria Rosaria Scala
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Cesare Zoia
- UOC Neurochirurgia, Ospedale Moriggia Pelascini, Gravedona Ed Uniti, Italy
| | - Paolo Cappabianca
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Felice Esposito
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| |
Collapse
|
5
|
Somma T, Fellico F, De Rosa A, Bocchino A, Corvino S, Milone A, Cappabianca P, Esposito F. Impact of deep brain stimulation therapy on the vertebral sagittal balance in Parkinson's disease patients. Neurosurg Rev 2023; 47:7. [PMID: 38063935 DOI: 10.1007/s10143-023-02243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Parkinson's disease (PD) is characterized by cardinal motor signs: 4-6 Hz resting tremor, rigidity, and bradykinesia. In addition, 3-18% of PD patients have camptocormia, an abnormal forward flexion of the thoracolumbar spine, which may have a negative impact on patients' quality of life. Different possible treatments have been suggested for such a condition, but no one is resolutive. This study aims to define the possible impact of DBS, with selective targeting on the dorsal-lateral region of the STN, on the sagittal balance of patients affected by PD. Among all patients that have undergone DBS procedures in our institution, we selected eight subjects, four females and four males, with selective targeting on the dorsal-lateral region of the subthalamic nucleus (STN) because of camptocormia and other severe postural changes. Radiological assessments of spinal balance parameters before surgery and at 6 and 12 months postoperatively were carried out. Comparison of preoperative and postoperative spine X-ray data showed a statistically significant improvement in dorsal kyphosis angle (D-Cobb) 12 months after the operation. Deep brain stimulation with selective targeting of the dorsal lateral part of the STN may induce changes of the posture in patients with Parkinson's disease 12 months after the operation, which appears to improve in this small sample size, but larger observational and controlled trials would be required to confirm this observation.
Collapse
Affiliation(s)
- Teresa Somma
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Fabrizio Fellico
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Andrea De Rosa
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Andrea Bocchino
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Sergio Corvino
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Antonio Milone
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Paolo Cappabianca
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Felice Esposito
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy.
| |
Collapse
|
6
|
Li J, Li N, Wang X, Wang J, Wang X, Wang W. Long-Term Outcome of Subthalamic Deep Brain Stimulation for Generalized Isolated Dystonia. Neuromodulation 2023; 26:1653-1660. [PMID: 36028445 DOI: 10.1016/j.neurom.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Few studies have focused on subthalamic nucleus deep brain stimulation for refractory isolated dystonia, and the long-term outcomes are unclear. In this study, we evaluated the efficacy of subthalamic stimulation for generalized isolated dystonia for more than five years and explored the factors predicting clinical outcomes. MATERIALS AND METHODS A total of 16 patients with generalized isolated dystonia underwent a two-phase procedure for stimulation system implantation. After implanting the leads, we performed a test stimulation and observed the stimulation response. The severity of dystonia was assessed using a blinded rating of the Burke-Fahn-Marsden Dystonia Rating Scale based on videos recorded at scheduled times. RESULTS The mean follow-up time was 7.4 ± 2.2 years (5-12.5 years). The severity of dystonia improved significantly one year after surgery. The movement score decreased from 49.3 (40.9) points at baseline to 26.5 (43.5) points (-44.6%) at six months, 12.0 (22.5) points (-66.8%) at one year, 11.25 (17.6) points (-72.7%) at three years, and 12.5 (21.0) points (-72.6%) at the last follow-up. The improvement in motor symptoms resulted in a corresponding improvement in activities of daily living. Greater long-term outcomes were correlated with early stimulation responses, lower baseline movement scores, and female sex. When analyzed comprehensively, only the baseline movement score had meaningful predictive value for the outcome. CONCLUSIONS Our results indicate that subthalamic stimulation is effective and durable in treating generalized isolated dystonia. The subthalamic nucleus may be an alternative target for the treatment of refractory dystonia. Patients with less severe motor symptoms may benefit more from this treatment.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Vijayaraghavan A, Scaria S, Radhakrishnan V, Puthenveedu DK, Krishnan S, Kesavapisharady K. Subthalamic Deep Brain Stimulation for Parkinson's Disease-An Unexpected Encounter in the Lead Trajectory. Ann Indian Acad Neurol 2023; 26:597-599. [PMID: 37970261 PMCID: PMC10645220 DOI: 10.4103/aian.aian_360_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Asish Vijayaraghavan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - Sam Scaria
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - Divya K. Puthenveedu
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | | |
Collapse
|
8
|
Somma T, Esposito F, Scala MR, Scelzo A, Baiano C, Patti S, Meglio V, Iasevoli F, Cavallo LM, Solari D, De Bartolomeis A, Cappabianca P, D’Urso G. Psychiatric Symptoms in Parkinson's Disease Patients before and One Year after Subthalamic Nucleus Deep Brain Stimulation Therapy: Role of Lead Positioning and Not of Total Electrical Energy Delivered. J Pers Med 2022; 12:jpm12101643. [PMID: 36294782 PMCID: PMC9605574 DOI: 10.3390/jpm12101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Parkinson’s disease (PD) patients may experience neuropsychiatric symptoms, including depression, anxiety, sleep disturbances, psychosis, as well as behavioral and cognitive symptoms during all the different stages of the illness. Deep Brain Stimulation (DBS) therapy has proven to be successful in controlling the motor symptoms of PD and its possible correlation with the occurrence or worsening of neuropsychiatric symptoms has been reported. We aimed to assess the neuropsychiatric symptoms of 14 PD patients before and after one year of Subthalamic Nucleus (STN)-DBS and to correlate the possible changes to the lead placement and to the total electrical energy delivered. We assessed PD motor symptoms, depression, anxiety, apathy, impulsivity, and suicidality using clinician- and/or self-administered rating scales and correlated the results to the lead position using the Medtronic SuretuneTM software and to the total electrical energy delivered (TEED). At the 12-month follow-up, the patients showed a significant improvement in PD symptoms on the UPDRS (Unified Parkinson’s disease Rating Scale) (−38.5%; p < 0.001) and in anxiety on the Hamilton Anxiety Rating Scale (HAM-A) (−29%; p = 0.041), with the most significant reduction in the physiological anxiety subscore (−36.26%; p < 0.001). A mild worsening of impulsivity was detected on the Barratt Impulsiveness Scale (BIS-11) (+9%; p = 0.048), with the greatest increase in the attentional impulsiveness subscore (+13.60%; p = 0.050). No statistically significant differences were found for the other scales. No correlation was found between TEED and scales’ scores, while the positioning of the stimulating electrodes in the different portions of the STN was shown to considerably influence the outcome, with more anterior and/or medial lead position negatively influencing psychiatric symptoms.
Collapse
Affiliation(s)
- Teresa Somma
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Felice Esposito
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- Department of NeuroSciences and Reproductive and Odontostomatological Sciences, Division of NeuroSurgery, Federico II University of Naples, 80131 Naples, Italy
- Neurosurgery Unit, Federico II Medical Center, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-746 (ext. 2489)
| | - Maria Rosaria Scala
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Antonio Scelzo
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of Psychiatry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Cinzia Baiano
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Sara Patti
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of Psychiatry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Vincenzo Meglio
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Felice Iasevoli
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of Psychiatry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Luigi M. Cavallo
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Domenico Solari
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Andrea De Bartolomeis
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of Psychiatry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paolo Cappabianca
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of NeuroSurgery, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Giordano D’Urso
- Department of NeuroSciences and Reproductive and Dental Sciences, Division of Psychiatry, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|