1
|
Zuppe H, Reed E. Common cytokine receptor gamma chain family cytokines activate MAPK, PI3K, and JAK/STAT pathways in microglia to influence Alzheimer's Disease. Front Mol Neurosci 2024; 17:1441691. [PMID: 39324116 PMCID: PMC11422389 DOI: 10.3389/fnmol.2024.1441691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Dementia is an umbrella term used to describe deterioration of cognitive function. It is the seventh leading cause of death and is one of the major causes of dependence among older people globally. Alzheimer's Disease (AD) contributes to approximately 60-70% of dementia cases and is characterized by the accumulation of amyloid plaques and tau tangles in the brain. Neuroinflammation is now widely accepted as another disease hallmark, playing a role in both the response to and the perpetuation of disease processes. Microglia are brain-resident immune cells that are initially effective at clearing amyloid plaques but contribute to the damaging inflammatory milieu of the brain as disease progresses. Circulating peripheral immune cells contribute to this inflammatory environment through cytokine secretion, creating a positive feedback loop with the microglia. One group of these peripherally derived cytokines acting on microglia is the common cytokine receptor γ chain family. These cytokines bind heterodimer receptors to activate three major signaling pathways: MAPK, PI3K, and JAK/STAT. This perspective will look at the mechanisms of these three pathways in microglia and highlight the future directions of this research and potential therapeutics.
Collapse
Affiliation(s)
- Hannah Zuppe
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Erin Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
2
|
Nam Y, Kim S, Park YH, Kim B, Shin SJ, Leem SH, Park HH, Jung G, Lee J, Kim H, Yoo D, Kim HS, Moon M. Investigating the impact of environmental enrichment on proteome and neurotransmitter-related profiles in an animal model of Alzheimer's disease. Aging Cell 2024; 23:e14231. [PMID: 38952076 PMCID: PMC11488327 DOI: 10.1111/acel.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/03/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aβ accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Sujin Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Yong Ho Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Byeong‐Hyeon Kim
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
| | | | | | | | - Doo‐Han Yoo
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
- Department of Occupational TherapyKonyang UniversityDaejeonSouth Korea
| | - Hak Su Kim
- Veterans Medical Research InstituteVeterans Health Service Medical CenterSeoulSouth Korea
| | - Minho Moon
- Department of Biochemistry, College of MedicineKonyang UniversityDaejeonSouth Korea
- Research Institute for Dementia ScienceKonyang UniversityDaejeonSouth Korea
| |
Collapse
|
3
|
Li X, Qiao M, Zhou Y, Peng Y, Wen G, Xie C, Zhang Y. Modulating the RPS27A/PSMD12/NF-κB pathway to control immune response in mouse brain ischemia-reperfusion injury. Mol Med 2024; 30:106. [PMID: 39039432 PMCID: PMC11265174 DOI: 10.1186/s10020-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.
Collapse
Affiliation(s)
- Xiaocheng Li
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University & College of Food and Biological Engineering, Chengdu, 610081, P. R. China
| | - Ming Qiao
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Yan Peng
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Gang Wen
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, P. R. China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, Sichuan, 610081, P. R. China.
| |
Collapse
|
4
|
Zhu Y, Zhao X, Liu R, Yang D, Ge G. Effect of Oxygen-Glucose Deprivation of Microglia-Derived Exosomes on Hippocampal Neurons: A Study on miR-124 and Inflammatory Cytokines. J Mol Histol 2024; 55:349-357. [PMID: 38598045 DOI: 10.1007/s10735-024-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Stroke is a cerebrovascular disease that threatens human health. Developing safe and effective drugs and finding therapeutic targets has become an urgent scientific problem. The aim of this study was to investigate the effect of oxygen-glucose deprivation of the microglia-derived exosome on hippocampal neurons and its relationship to miR-124 in the exosome. We incubated hippocampal neurons with exosomes secreted by oxygen-glucose deprivation/ reoxygenation (OGD/R) microglia. The levels of glutamic acid (GLU) and gamma-aminobutyric acid (GABA) in the culture supernatant were detected by ELISA. CCK-8 was used to measure neuronal survival rates. The mRNA levels of TNF-α and IL-6 were detected by RT-qPCR to evaluate the effect of exosomes on neurons. RT-qPCR was then used to detect miR-124 in microglia and their secreted exosomes. Finally, potential targets of miR-124 were analyzed through database retrieval, gene detection with dual luciferase reporters, and western blotting experiments. The results showed that the contents of GLU, TNF-α and IL-6 mRNA increased in the supernatant of cultured hippocampal neurons, the content of GABA decreased, and the survival rate of neurons decreased. Oxygen-glucose deprivation increases miR-124 levels in microglia and their released exosomes. miR-124 acts as a target gene on cytokine signaling suppressor molecule 1(SOCS1), while miR-124 inhibitors reduce the expression of TNF-α and IL-6 mRNA in neurons. These results suggest that oxygen- and glucose-deprived microglia regulate inflammatory cytokines leading to reduced neuronal survival, which may be achieved by miR-124 using SOCS1 as a potential target.
Collapse
Affiliation(s)
- Yizhen Zhu
- Class 5, Grade 2023, Clinical Medicine, Guizhou Medical University, Gui'an New District, Guizhou, 561113, People's Republic of China
| | - Xue Zhao
- Department of Human Anatomy, Guizhou Medical University School of Basic Medicine, Gui'an New District, Guizhou, 561113, People's Republic of China
| | - Ruojing Liu
- Department of Human Anatomy, Guizhou Medical University School of Basic Medicine, Gui'an New District, Guizhou, 561113, People's Republic of China
| | - Dan Yang
- Department of Human Anatomy, Guizhou Medical University School of Basic Medicine, Gui'an New District, Guizhou, 561113, People's Republic of China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University School of Basic Medicine, Guizhou, 561113, People's Republic of China
| | - Guo Ge
- Department of Human Anatomy, Guizhou Medical University School of Basic Medicine, Gui'an New District, Guizhou, 561113, People's Republic of China.
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University School of Basic Medicine, Guizhou, 561113, People's Republic of China.
| |
Collapse
|
5
|
Yang Y, Fei Y, Xu X, Yao J, Wang J, Liu C, Ding H. Shikonin attenuates cerebral ischemia/reperfusion injury via inhibiting NOD2/RIP2/NF-κB-mediated microglia polarization and neuroinflammation. J Stroke Cerebrovasc Dis 2024; 33:107689. [PMID: 38527567 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVES Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-β), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.
Collapse
Affiliation(s)
- Ya Yang
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuejiao Xu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun Yao
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China
| | - Jianing Wang
- Department of Pharmacy, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyan Ding
- College of Pharmacy, Xinjiang Medical University, No. 567 North Shangde Road, Urumqi, Xinjiang 830017, PR China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi, Xinjiang 830017, PR China.
| |
Collapse
|
6
|
Liu C, Chen H, Tao X, Li C, Li A, Wu W. ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m 6A-YTHDF1-dependent manner. Exp Neurol 2024; 372:114629. [PMID: 38056583 DOI: 10.1016/j.expneurol.2023.114629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.
Collapse
Affiliation(s)
- Chujuan Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China; Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Hui Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China
| | - Xi Tao
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Chen Li
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Aiping Li
- Department of Neurological Neurology, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China.
| |
Collapse
|
7
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
8
|
Zhang X, Wang T, Miao Y, Lin W, Zhu L, Meng X, Zhang F. Dauricine exhibits anti-inflammatory property against acute ulcerative colitis via the regulation of NF-κB pathway. Cell Biochem Funct 2023; 41:713-721. [PMID: 37470500 DOI: 10.1002/cbf.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
We aim to investigate the therapeutic effect of dauricine on ulcerative colitis (UC). Our results indicated that dauricine attenuated the reduction of colonic length, weight loss, disease activity index, colonic tissue damage, and inflammatory cytokine levels in dextran sulfate sodium mice. In addition, dauricine reduced lipopolysaccharide-induced inflammation in HT-29 cells. Mechanically, dauricine docked with p65, a member of nuclear transcription factor kappaB (NF-κB) family, through which reduced the inflammatory cytokine release from HT-29 cells. Together, the above results inferred that dauricine had therapeutic effect for UC by suppressing NF-κB pathway, which provided a promising mean for UC treatment.
Collapse
Affiliation(s)
- Xu Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Ting Wang
- Group Office, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Yu Miao
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Wan Lin
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Litao Zhu
- Outpatient Department, Ningxia Yinchuan Prison Hospital, Yinchuan, Ningxia, China
| | - Xiangkun Meng
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| | - Feixiong Zhang
- Gastroenterology Department, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China
| |
Collapse
|