1
|
Du Y, Huang Z, Wu Y, Xue Y, Che Z. Glymphatic system dysfunction associated with cognitive impairment in chronic tinnitus patients. Front Neurosci 2024; 18:1455294. [PMID: 39308949 PMCID: PMC11412960 DOI: 10.3389/fnins.2024.1455294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background The glymphatic system has been regarded as a pivotal factor in the pathogenesis of neurodegenerative diseases. Given the heightened risk of cognitive impairment in chronic tinnitus patients, the possible alterations of the glymphatic system in tinnitus patients remain elusive. This study was designed to evaluate glymphatic dysfunction in chronic tinnitus patients using the diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) approach. Methods Fifty chronic tinnitus patients and 50 age, sex, and education-matched healthy controls (HCs) with normal hearing thresholds were recruited. The DTI-ALPS was calculated from each group. We investigated the differences in the DTI-ALPS index between the tinnitus patients and HCs. The relationships between the DTI-ALPS index and specific cognitive performance were further assessed. Results There were significant differences in the DTI-ALPS index between the two groups. The DTI-ALPS index was significantly lower in the tinnitus group than in HCs group (p < 0.01). In addition, the Dyyproj index was significantly higher in the tinnitus group than in the HC group (p < 0.01). In chronic tinnitus patients, the decreased DTI-ALPS index was negatively associated with worse TMT-B scores (r = -0.309, p = 0.039). Moreover, the increased Dyyproj index was negatively correlated with the reduced AVLT performances (r = -0.413, p = 0.005). Conclusion In this current study, glymphatic system activity in chronic tinnitus was investigated for the first time using DTI-ALPS index. Significant decrease in glymphatic system function was detected in chronic tinnitus, which correlated well with the specific cognitive performance. The current study may provide pivotal imaging markers for chronic tinnitus with cognitive impairment.
Collapse
Affiliation(s)
- Yinjuan Du
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhichun Huang
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou People’s Hospital, Nanjing, China
| | - Zigang Che
- Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Wei S, Du T, Zhang L, Li X, Wang Z, Ning Y, Tang Y, Wu X, Han J. A comprehensive exploration of astrocytes in migraine: a bibliometric and visual analysis. Eur J Med Res 2024; 29:321. [PMID: 38858735 PMCID: PMC11163711 DOI: 10.1186/s40001-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Migraine, as a prevalent neurologic disorder, involves intricate and yet incompletely elucidated pathophysiological mechanisms. A plethora of research findings underscores the pivotal role played by astrocytes in the progression of migraines. In order to elucidate the current advances and directions in research pertaining to astrocytes in migraines, we conducted bibliometric analysis of relevant literature and visualized the results. Subsequently, we expound upon these findings to contribute to the evolving understanding of the role of astrocytes in migraine pathophysiology. METHODS On November 21, 2023, we conducted a search on Web of Science (WOS), restricting the document type to articles or reviews and language to English. Following a meticulous selection process involving three researchers, we identified the literature to be included in our analysis. Subsequently, we employed Microsoft Office Excel programs, R, VOSviewer, Scimago Graphica, and CiteSpace software to conduct visualization analysis of basic information and trends regarding journals, countries/regions, and influential authors, institutions, keywords, and papers. RESULTS As of November 21, 2023, relevant literature has been published in 71 journals across 27 countries/regions. This corpus comprises contributions from 576 authors affiliated with 220 institutions, encompassing 865 keywords and referencing 6065 scholarly articles. CEPHALALGIA stands out as the most influential journal in this field, while authors PIETROBON D and DALKARA T have significant impact. The United States is highly influential, with CNR and UNIV PADUA emerging as highly influential institutions. The predominant category is Neurosciences. CONCLUSIONS Future investigators may continue to focus on migraines with aura, familial hemiplegic migraine (FHM), and the crucial calcitonin gene-related peptide (CGRP) system. Employing advanced observational techniques, such as imaging, researchers should pay attention to cellular and tissue structures, such as microglia and the trigeminal ganglion, as well as mechanisms involving inflammation and central sensitization. Moreover, animal models are paramount in obtaining high-quality evidence.
Collapse
Affiliation(s)
- Shijie Wei
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianqi Du
- Center of Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yike Ning
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Tang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Wei S, Du T, Zhang L, Li X, Wang Z, Ning Y, Tang Y, Wu X, Han J. A comprehensive exploration of astrocytes in migraine: a bibliometric and visual analysis. Eur J Med Res 2024; 29:321. [PMID: 38858735 DOI: 10.1186/s40001-024-01919-zif:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Migraine, as a prevalent neurologic disorder, involves intricate and yet incompletely elucidated pathophysiological mechanisms. A plethora of research findings underscores the pivotal role played by astrocytes in the progression of migraines. In order to elucidate the current advances and directions in research pertaining to astrocytes in migraines, we conducted bibliometric analysis of relevant literature and visualized the results. Subsequently, we expound upon these findings to contribute to the evolving understanding of the role of astrocytes in migraine pathophysiology. METHODS On November 21, 2023, we conducted a search on Web of Science (WOS), restricting the document type to articles or reviews and language to English. Following a meticulous selection process involving three researchers, we identified the literature to be included in our analysis. Subsequently, we employed Microsoft Office Excel programs, R, VOSviewer, Scimago Graphica, and CiteSpace software to conduct visualization analysis of basic information and trends regarding journals, countries/regions, and influential authors, institutions, keywords, and papers. RESULTS As of November 21, 2023, relevant literature has been published in 71 journals across 27 countries/regions. This corpus comprises contributions from 576 authors affiliated with 220 institutions, encompassing 865 keywords and referencing 6065 scholarly articles. CEPHALALGIA stands out as the most influential journal in this field, while authors PIETROBON D and DALKARA T have significant impact. The United States is highly influential, with CNR and UNIV PADUA emerging as highly influential institutions. The predominant category is Neurosciences. CONCLUSIONS Future investigators may continue to focus on migraines with aura, familial hemiplegic migraine (FHM), and the crucial calcitonin gene-related peptide (CGRP) system. Employing advanced observational techniques, such as imaging, researchers should pay attention to cellular and tissue structures, such as microglia and the trigeminal ganglion, as well as mechanisms involving inflammation and central sensitization. Moreover, animal models are paramount in obtaining high-quality evidence.
Collapse
Affiliation(s)
- Shijie Wei
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianqi Du
- Center of Human Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lili Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Wang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yike Ning
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Tang
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
5
|
Prasuhn J, Xu J, Hua J, van Zijl P, Knutsson L. Exploring neurodegenerative disorders using advanced magnetic resonance imaging of the glymphatic system. Front Psychiatry 2024; 15:1368489. [PMID: 38651012 PMCID: PMC11033437 DOI: 10.3389/fpsyt.2024.1368489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
The glymphatic system, a macroscopic waste clearance system in the brain, is crucial for maintaining neural health. It facilitates the exchange of cerebrospinal and interstitial fluid, aiding the clearance of soluble proteins and metabolites and distributing essential nutrients and signaling molecules. Emerging evidence suggests a link between glymphatic dysfunction and the pathogenesis of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. These disorders are characterized by the accumulation and propagation of misfolded or mutant proteins, a process in which the glymphatic system is likely involved. Impaired glymphatic clearance could lead to the buildup of these toxic proteins, contributing to neurodegeneration. Understanding the glymphatic system's role in these disorders could provide insights into their pathophysiology and pave the way for new therapeutic strategies. Pharmacological enhancement of glymphatic clearance could reduce the burden of toxic proteins and slow disease progression. Neuroimaging techniques, particularly MRI-based methods, have emerged as promising tools for studying the glymphatic system in vivo. These techniques allow for the visualization of glymphatic flow, providing insights into its function under healthy and pathological conditions. This narrative review highlights current MRI-based methodologies, such as motion-sensitizing pulsed field gradient (PFG) based methods, as well as dynamic gadolinium-based and glucose-enhanced methodologies currently used in the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jiadi Xu
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Jun Hua
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Peter van Zijl
- Division of Magnetic Resonance (MR) Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Linda Knutsson
- F. M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Vittorini MG, Sahin A, Trojan A, Yusifli S, Alashvili T, Bonifácio GV, Paposhvili K, Tischler V, Lampl C, Sacco S. The glymphatic system in migraine and other headaches. J Headache Pain 2024; 25:34. [PMID: 38462633 PMCID: PMC10926631 DOI: 10.1186/s10194-024-01741-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Glymphatic system is an emerging pathway of removing metabolic waste products and toxic solutes from the brain tissue. It is made of a network of perivascular spaces, filled in cerebrospinal and interstitial fluid, encompassing penetrating and pial vessels and communicating with the subarachnoid space. It is separated from vessels by the blood brain barrier and from brain tissue by the endfeet of the astrocytes rich in aquaporin 4, a membrane protein which controls the water flow along the perivascular space. Animal models and magnetic resonance (MR) studies allowed to characterize the glymphatic system function and determine how its impairment could lead to numerous neurological disorders (e.g. Alzheimer's disease, stroke, sleep disturbances, migraine, idiopathic normal pressure hydrocephalus). This review aims to summarize the role of the glymphatic system in the pathophysiology of migraine in order to provide new ways of approaching to this disease and to its therapy.
Collapse
Affiliation(s)
- Maria Grazia Vittorini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Aysenur Sahin
- Faculty of Medicine-Acibadem Mehmet, Ali Aydinlar University, Istanbul, Turkey
| | - Antonin Trojan
- Department of Neurology, Strakonice Hospital, Strakonice, Czechia
| | - Sevil Yusifli
- Faculty of Medicine-Istanbul University, Istanbul, Turkey
| | - Tamta Alashvili
- Department of Internal Medicine, New Vision University Hospital, Tbilisi, Georgia
| | | | - Ketevan Paposhvili
- Department of Neurology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Viktoria Tischler
- Department of Neurology, Konventhospital Barmherzige Brüder Linz, Linz, Austria
| | - Christian Lampl
- Department of Neurology, Konventhospital Barmherzige Brüder Linz, Linz, Austria.
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
8
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|