1
|
Wang JQ, Liu YR, Xia QR, Liang J, Wang JL, Li J. Functional roles, regulatory mechanisms and theranostics applications of ncRNAs in alcohol use disorder. Int J Biol Sci 2023; 19:1316-1335. [PMID: 36923934 PMCID: PMC10008696 DOI: 10.7150/ijbs.81518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Alcohol use disorder (AUD) is one of the most prevalent neuropsychological disorders worldwide, and its pathogenesis is convoluted and poorly understood. There is considerable evidence demonstrating significant associations between multiple heritable factors and the onset and progression of AUD. In recent years, a substantial body of research conducted by emerging biotechnologies has increasingly highlighted the crucial roles of noncoding RNAs (ncRNAs) in the pathophysiology of mental diseases. As in-depth understanding of ncRNAs and their mechanisms of action, they have emerged as prospective diagnostic indicators and preclinical therapeutic targets for a variety of psychiatric illness, including AUD. Of note, dysregulated expression of ncRNAs such as circRNAs, lncRNAs and miRNAs was routinely found in AUD individuals, and besides, exogenous regulation of partial ncRNAs has also been shown to be effective in ameliorating alcohol preference and excessive alcohol consumption. However, the exact molecular mechanism still remains elusive. Herein, we systematically summarized current knowledge regarding alterations in the expression of certain ncRNAs as well as their-mediated regulatory mechanisms in individuals with AUD. And finally, we detailedly reviewed the potential theranostics applications of gene therapy agents targeting ncRNAs in AUD mice. Overall, a deeper comprehension of functional roles and biological mechanisms of ncRNAs may make significant contributions to the accurate diagnosis and effective treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Ya-Ru Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, 230000, China.,Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, China.,Anhui Clinical Research Center for Mental Disorders, Hefei,230000, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
2
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
3
|
Arzua T, Jiang C, Yan Y, Bai X. The importance of non-coding RNAs in environmental stress-related developmental brain disorders: A systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 2021; 128:633-647. [PMID: 34186153 PMCID: PMC8357057 DOI: 10.1016/j.neubiorev.2021.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a dynamic and lengthy process that includes cell proliferation, migration, neurogenesis, gliogenesis, synaptogenesis, and pruning. Disruption of any of these developmental events can result in long-term outcomes ranging from brain structural changes, to cognitive and behavioral abnormality, with the mechanisms largely unknown. Emerging evidence suggests non-coding RNAs (ncRNAs) as pivotal molecules that participate in normal brain development and neurodevelopmental disorders. NcRNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are transcribed from the genome but not translated into proteins. Many ncRNAs have been implicated as tuners of cell fate. In this review, we started with an introduction of the current knowledge of lncRNAs and miRNAs, and their potential roles in brain development in health and disorders. We then reviewed and discussed the evidence of ncRNA involvement in abnormal brain development resulted from alcohol, anesthetic drugs, nicotine, and viral infections. The complex connections among these ncRNAs were also discussed, along with potential overlapping ncRNA mechanisms, possible pharmacological targets for therapeutic/neuroprotective interventions, and potential biomarkers for brain developmental disorders.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Janeczek P, Colson N, Dodd PR, Lewohl JM. Sex Differences in the Expression of the α5 Subunit of the GABA A Receptor in Alcoholics with and without Cirrhosis of the Liver. Alcohol Clin Exp Res 2020; 44:423-434. [PMID: 31840824 DOI: 10.1111/acer.14266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol exposure alters the expression of a large number of genes, resulting in neuronal adaptions and neuronal loss, but the underlying mechanisms are largely unknown. miRNAs are gene repressors that are abundant in the brain. A recent study identified ~ 35 miRNAs that are up-regulated in the prefrontal cortex of human alcoholics and predicted to target genes that are down-regulated in the same region. Although interactions between alcohol-responsive miRNAs and their target genes have been predicted, few studies have validated these predictions. METHODS We measured the expression of GABAA α5 mRNA in the prefrontal and motor cortices of human alcoholics and matched controls using real-time PCR. The expression of miR-203 was measured in a subset of these cases. The predicted interaction of miR-203 and GABRA5 was validated for miR-203 using a luciferase reporter assay. RESULTS In both frontal and motor cortices, the expression of GABAA α5 was significantly lower in cirrhotic alcoholics compared with controls. Further, the pattern of expression between the groups was significantly different between males and females. The expression of miR-203 was higher in the prefrontal cortex of cirrhotic alcoholics compared with controls and uncomplicated alcoholics. These differences were particularly marked in female cases. Cotransfection of GABRA5 with miR-203 in HEK293T cells reduced luciferase reporter activity. CONCLUSION There are sex differences in the expression of GABAA α5 and miR-203 in the brain of human alcoholics which are particularly marked in alcoholics with cirrhosis of the liver. Further, miR-203 may mediate the changes in expression of this GABAA receptor isoform that is brought about by alcohol exposure.
Collapse
Affiliation(s)
- Paulina Janeczek
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Natalie Colson
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, (PRD), The University of Queensland St Lucia campus, Brisbane, Queensland, Australia
| | - Joanne M Lewohl
- From the, School of Medical Science, (PJ, NC, JML), Griffith University Gold Coast campus, Southport, Queensland, Australia
| |
Collapse
|
5
|
Most D, Salem NA, Tiwari GR, Blednov YA, Mayfield RD, Harris RA. Silencing synaptic MicroRNA-411 reduces voluntary alcohol consumption in mice. Addict Biol 2019; 24:604-616. [PMID: 29665166 DOI: 10.1111/adb.12625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Chronic alcohol consumption alters the levels of microRNAs and mRNAs in the brain, but the specific microRNAs and processes that target mRNAs to affect cellular function and behavior are not known. We examined the in vivo manipulation of previously identified alcohol-responsive microRNAs as potential targets to reduce alcohol consumption. Silencing of miR-411 by infusing antagomiR-411 into the prefrontal cortex of female C57BL/6J mice reduced alcohol consumption and preference, without altering total fluid consumption, saccharin consumption, or anxiety-related behaviors. AntagomiR-411 reduced alcohol consumption when given to mice exposed to a chronic alcohol drinking paradigm but did not affect the acquisition of consumption in mice without a history of alcohol exposure, suggesting that antagomiR-411 has a neuroadaptive, alcohol-dependent effect. AntagomiR-411 decreased the levels of miR-411, as well as the association of immunoprecipitated miR-411 with Argonaute2; and, it increased levels of Faah and Ppard mRNAs. Moreover, antagomiR-411 increased the neuronal expression of glutamate receptor AMPA-2 protein, a known alcohol target and a predicted target of miR-411. These results suggest that alcohol and miR-411 function in a homeostatic manner to regulate synaptic mRNA and protein, thus reversing alcohol-related neuroadaptations and reducing chronic alcohol consumption.
Collapse
Affiliation(s)
- Dana Most
- Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at Austin Austin TX USA
- Institute for NeuroscienceUniversity of Texas at Austin Austin TX USA
| | - Nihal A. Salem
- Texas A&M Institute for Neuroscience and Department of Neuroscience and Experimental Therapeutics, College of MedicineTexas A&M University College Station TX USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at Austin Austin TX USA
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at Austin Austin TX USA
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at Austin Austin TX USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction ResearchThe University of Texas at Austin Austin TX USA
- Institute for NeuroscienceUniversity of Texas at Austin Austin TX USA
| |
Collapse
|
6
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
7
|
Plasma miRNA Profiles in Pregnant Women Predict Infant Outcomes following Prenatal Alcohol Exposure. PLoS One 2016; 11:e0165081. [PMID: 27828986 PMCID: PMC5102408 DOI: 10.1371/journal.pone.0165081] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/05/2016] [Indexed: 12/04/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are difficult to diagnose since many heavily exposed infants, at risk for intellectual disability, do not exhibit craniofacial dysmorphology or growth deficits. Consequently, there is a need for biomarkers that predict disability. In both animal models and human studies, alcohol exposure during pregnancy resulted in significant alterations in circulating microRNAs (miRNAs) in maternal blood. In the current study, we asked if changes in plasma miRNAs in alcohol-exposed pregnant mothers, either alone or in conjunction with other clinical variables, could predict infant outcomes. Sixty-eight pregnant women at two perinatal care clinics in western Ukraine were recruited into the study. Detailed health and alcohol consumption histories, and 2nd and 3rd trimester blood samples were obtained. Birth cohort infants were assessed by a geneticist and classified as unexposed (UE), heavily prenatally exposed and affected (HEa) or heavily exposed but apparently unaffected (HEua). MiRNAs were assessed in plasma samples using qRT-PCR arrays. ANOVA models identified 11 miRNAs that were all significantly elevated in maternal plasma from the HEa group relative to HEua and UE groups. In a random forest analysis classification model, a combination of high variance miRNAs, smoking history and socioeconomic status classified membership in HEa and UE groups, with a misclassification rate of 13%. The RFA model also classified 17% of the HEua group as UE-like, whereas 83% were HEa-like, at least at one stage of pregnancy. Collectively our data indicate that maternal plasma miRNAs predict infant outcomes, and may be useful to classify difficult-to-diagnose FASD subpopulations.
Collapse
|
8
|
Zhang X, Wu Y, Pan Z, Sun H, Wang J, Yu D, Zhu S, Dai J, Chen Y, Tian N, Heng BC, Coen ND, Xu H, Ouyang H. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design. Acta Biomater 2016; 42:329-340. [PMID: 27345139 DOI: 10.1016/j.actbio.2016.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. STATEMENT OF SIGNIFICANCE Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Yan Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Zongyou Pan
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Junjuan Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Dongsheng Yu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Shouan Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Jun Dai
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
9
|
Mathew DE, Larsen K, Janeczek P, Lewohl JM. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs. Mol Cell Neurosci 2016; 75:44-9. [DOI: 10.1016/j.mcn.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/20/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023] Open
|
10
|
Prenatal ethanol exposure and placental hCG and IGF2 expression. Placenta 2015; 36:854-62. [PMID: 26031386 DOI: 10.1016/j.placenta.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Fetal alcohol spectrum disorder (FASD) is the main cause of preventable non-genetic mental retardation. Diagnosis of prenatal exposure to ethanol (PEE) is based on questionnaires and biomarkers in perinatal matrices. Early diagnosis of FASD is important to mitigate secondary disabilities that will arise later in life. It is important to identify biomarkers related to cellular damage caused by PEE. The main objective was to identify novel candidate biomarkers from placental tissue using an in vitro model of exposure to ethanol and to support it in placental tissue obtained from pregnancies with PEE assessed by fatty acid esters in meconium samples. METHODS First, hormone production was examined using two different human trophoblast cell lines, JEG3 and BeWo. Viable cell count by exclusion method was analyzed and human chorionic gonadotrophin (hCG) and insulin-like growth factor 2 (IGF2) were quantified by Western blot and ELISA. Second, these techniques were used in protein lysates from human placentas from pregnancies with and without exposure to ethanol. RESULTS Both trophoblast cell lines showed a decrease in cell viability accompanied with apoptosis activation after a chronic ethanol treatment. Moreover, we showed an increase in the secretion of hCG and IGF2 in a dose-dependent manner. Interestingly, this increase was also observed in a set of human placenta tissue from fetuses exposed prenatally to ethanol. DISCUSSION Ethanol exposure during pregnancy causes placenta cell damage, so altering its normal function. The specific hCG and IGF2 release pattern is a candidate surrogated biomarker of the damage due to PEE.
Collapse
|
11
|
Abstract
MicroRNAs (miRNAs) are a class of small nonprotein-coding RNAs (ncRNAs) that have been shown to promote the degradation of target messenger RNAs and inhibit the translation of networks of protein-coding genes to control the development of cells and tissues, and facilitate their adaptation to environmental forces. In this chapter, we will discuss recent data that show that miRNAs are an important component of the epigenetic landscape that regulates the transcription as well as the translation of protein-coding gene networks. We will discuss the evidence that implicates miRNAs in both developmental and adult effects of alcohol consumption. Understanding the interactions of this novel class of ncRNAs with the epigenome will be important for understanding the etiology of alcohol teratology and addiction as well as potential new treatment strategies.
Collapse
Affiliation(s)
- Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics and Women's Health in Neuroscience Program, A&M Health Science Center, College of Medicine, Bryan, Texas, USA.
| |
Collapse
|
12
|
Ignacio C, Mooney SM, Middleton FA. Effects of Acute Prenatal Exposure to Ethanol on microRNA Expression are Ameliorated by Social Enrichment. Front Pediatr 2014; 2:103. [PMID: 25309888 PMCID: PMC4173670 DOI: 10.3389/fped.2014.00103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are associated with abnormal social behavior. These behavioral changes may resemble those seen in autism. Rats acutely exposed to ethanol on gestational day 12 show decreased social motivation at postnatal day 42. We previously showed that housing these ethanol-exposed rats with non-exposed controls normalized this deficit. The amygdala is critical for social behavior and regulates it, in part, through connections with the basal ganglia, particularly the ventral striatum. MicroRNAs (miRNAs) are short, hairpin-derived RNAs that repress mRNA expression. Many brain disorders, including FASD, show dysregulation of miRNAs. In this study, we tested if miRNA and mRNA networks are altered in the amygdala and ventral striatum as a consequence of prenatal ethanol exposure and show any evidence of reversal as a result of social enrichment. RNA samples from two different brain regions in 72 male and female adolescent rats were analyzed by RNA-Seq and microarray analysis. Several miRNAs showed significant changes due to prenatal ethanol exposure and/or social enrichment in one or both brain regions. The top predicted gene targets of these miRNAs were mapped and subjected to pathway enrichment analysis. Several miRNA changes caused by ethanol were reversed by social enrichment, including mir-204, mir-299a, miR-384-5p, miR-222-3p, miR-301b-3p, and mir-6239. Moreover, enriched gene networks incorporating the targets of these miRNAs also showed reversal. We also extended our previously published mRNA expression analysis by directly examining all annotated brain-related canonical pathways. The additional pathways that were most strongly affected at the mRNA level included p53, CREB, glutamate, and GABA signaling. Together, our data suggest a number of novel epigenetic mechanisms for social enrichment to reverse the effects of ethanol exposure through widespread influences on gene expression.
Collapse
Affiliation(s)
- Cherry Ignacio
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University , Syracuse, NY , USA ; Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University , Syracuse, NY , USA ; Developmental Exposure Alcohol Research Center (DEARC), Binghamton University , Binghamton, NY , USA
| | - Sandra M Mooney
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton University , Binghamton, NY , USA ; Department of Pediatrics, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Frank A Middleton
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University , Syracuse, NY , USA ; Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University , Syracuse, NY , USA ; Developmental Exposure Alcohol Research Center (DEARC), Binghamton University , Binghamton, NY , USA
| |
Collapse
|
13
|
Janeczek P, Lewohl JM. The role of α-synuclein in the pathophysiology of alcoholism. Neurochem Int 2013; 63:154-62. [PMID: 23791711 DOI: 10.1016/j.neuint.2013.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/14/2022]
Abstract
Alcoholism has complex etiology and there is evidence for both genetic and environmental factors in its pathophysiology. Chronic, long-term alcohol abuse and alcohol dependence are associated with neuronal loss with the prefrontal cortex being particularly susceptible to neurotoxic damage. This brain region is involved in the development and persistence of alcohol addiction and neurotoxic damage is likely to exacerbate the reinforcing effects of alcohol and may hinder treatment. Understanding the mechanism of alcohol's neurotoxic effects on the brain and the genetic risk factors associated with alcohol abuse are the focus of current research. Because of its well-established role in neurodegenerative and neuropsychological disorders, and its emerging role in the pathophysiology of addiction, here we review the genetic and epigenetic factors involved in regulating α-synuclein expression and its potential role in the pathophysiology of chronic alcohol abuse. Elucidation of the mechanisms of α-synuclein regulation may prove beneficial in understanding the role of this key synaptic protein in disease and its potential for therapeutic modulation in the treatment of substance use disorders as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paulina Janeczek
- Griffith Health Institute, School of Medical Sciences, Griffith University, Gold Coast Campus, Southport, Australia
| | | |
Collapse
|