1
|
Al Khashali H, Ray R, Darweesh B, Wozniak C, Haddad B, Goel S, Seidu I, Khalil J, Lopo B, Murshed N, Guthrie J, Heyl D, Evans HG. Amyloid Beta Leads to Decreased Acetylcholine Levels and Non-Small Cell Lung Cancer Cell Survival via a Mechanism That Involves p38 Mitogen-Activated Protein Kinase and Protein Kinase C in a p53-Dependent and -Independent Manner. Int J Mol Sci 2024; 25:5033. [PMID: 38732252 PMCID: PMC11084752 DOI: 10.3390/ijms25095033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aβ), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aβ or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aβ 1-42, Aβ 1-40, Aβ 1-28, and Aβ 25-35. AChE and p53 activities increased upon A549 cell treatment with Aβ, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aβ effects. Aβ increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aβ on those activities. Moreover, the negative effect of Aβ on cell viability was diminished by cell co-treatment with ACh.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (H.A.K.); (R.R.); (B.D.); (C.W.); (B.H.); (S.G.); (I.S.); (J.K.); (B.L.); (N.M.); (J.G.); (D.H.)
| |
Collapse
|
2
|
Haddad B, Khalil J, Al Khashali H, Ray R, Goel S, Darweesh B, Coleman KL, Wozniak C, Ranzenberger R, Lopo B, Guthrie J, Heyl D, Evans HG. The role of leptin in regulation of the soluble amyloid precursor protein α (sAPPα) levels in lung cancer cell media. Sci Rep 2024; 14:4921. [PMID: 38418632 PMCID: PMC10901813 DOI: 10.1038/s41598-024-55717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Previously, we found that the levels of soluble amyloid precursor protein α (sAPPα) are regulated, in part, by acetylcholinesterase (AChE) in human A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell lines. In this study, we found regulation of sAPPα levels in the media by leptin, a widely recognized obesity-associated adipokine that has recently been shown to play a possible role in cancer signaling. Increased levels of sAPPα, that were accompanied by lower Aβ40/42 levels in the media of A549 and H1299 cells, were detected upon cell incubation with leptin. Conversely, knockdown of leptin or its receptor led to reduced levels of sAPPα and increased levels of Aβ40/42 in the media of A549 and H1299 cells, suggesting that leptin likely shifts APP processing toward the non-amyloidogenic pathway. A549 cell treatment with leptin increased acetylcholine levels and blocked the activities of AChE and p53. Treatment with leptin resulted in increased activation of PKC, ERK1/2, PI3K, and the levels of sAPPα, effects that were reversed by treatment with kinase inhibitors and/or upon addition of AChE to A549 and H1299 cell media. Cell viability increased by treatment of A549 and H1299 cells with leptin and decreased upon co-treatment with AChE and/or inhibitors targeting PKC, ERK1/2, and PI3K. This study is significant as it provides evidence for a likely carcinogenic role of leptin in NSCLC cells via upregulation of sAPPα levels in the media, and highlights the importance of targeting leptin as a potential therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Ben Haddad
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeneen Khalil
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hind Al Khashali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Ravel Ray
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Stuti Goel
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Ban Darweesh
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Kai-Ling Coleman
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Caroline Wozniak
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Robert Ranzenberger
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Brooke Lopo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
3
|
Dodd D, Helsel B, Bodde AE, Danon JC, Sherman JR, Donnelly JE, Washburn RA, Ptomey LT. The association of increased body mass index on cardiorespiratory fitness, physical activity, and cognition in adults with down syndrome. Disabil Health J 2023; 16:101497. [PMID: 37407386 PMCID: PMC10680094 DOI: 10.1016/j.dhjo.2023.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Obesity is a significant risk factor for Alzheimer's disease; however, this association has not been explored in adults with Down syndrome. OBJECTIVE To examine the association of obesity, assessed by body mass index (BMI), with factors related to Alzheimer's disease risk including cardiorespiratory fitness, physical activity, and cognition in adults with Down syndrome. METHODS Adults with Down syndrome attended a laboratory visit where BMI, cardiorespiratory fitness (VO2 peak), and cognitive function (CANTAB® DS Battery) were obtained. Physical activity (accelerometer) was collected over the week following the laboratory visit. Wilcoxon rank sum tests were used to evaluate differences in cardiorespiratory fitness, sedentary time, moderate-to-vigorous physical activity (MVPA), and cognition between adults with obesity (BMI≥ 30 kg/m2) and those with healthy weight or overweight (BMI <30 kg/m2). Spearman correlations and linear regressions were used to measure the impact of BMI on cardiorespiratory fitness, MVPA, sedentary time, and cognition. RESULTS Data was collected for 79 adults with Down syndrome (26.7 ± 9.0 years of age, 54% female, 54% with obesity). VO2 peak was significantly lower in participants with obesity (18.4 ± 2.5 ml/kg/min) compared to those with healthy weight or overweight (22.9 ± 4.0 ml/kg/min, p < 0.001). BMI was negatively associated with cardiorespiratory fitness (rho = -0.614, p < 0.001). No associations were observed between BMI and physical activity or cognition. CONCLUSIONS Lower BMI was associated with improved cardiorespiratory fitness. However, no associations were observed between BMI and cognition or physical activity. NCT REGISTRATION NCT04048759.
Collapse
Affiliation(s)
- Danica Dodd
- School of Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA; Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Brian Helsel
- Department of Neurology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Amy E Bodde
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Jessica C Danon
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Joseph R Sherman
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Joseph E Donnelly
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Richard A Washburn
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Lauren T Ptomey
- Department of Internal Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Li M, Huang X, Huang M, Jin W, Hong Z, Zhang Y, Fang H, Chen W. Effects of fatty acid-ethanol amine (FA-EA) derivatives on lipid accumulation and inflammation. Lipids 2023; 58:117-127. [PMID: 36942837 DOI: 10.1002/lipd.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate the effect of fatty acid-ethanol amine (FA-EA) derivatives (L1-L10) on the mitigation of intracellular lipid accumulation and downregulation of pro-inflammatory cytokines in vitro. First, the series of FA-EA derivatives were synthesized and characterized. Then, their cytotoxic, intracellular lipid accumulation and inhibition of pro-inflammatory cytokines were evaluated. The oil red O staining experiment showed that the tested compounds L4, L6, L8, L9, and L10 could reduce intracellular lipid accumulation induced by palmitic acid (PA). Moreover, ω-3/ω-6 PUFA-EA derivatives showed inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS) -stimulated RAW 264.7 cells. ω-3/ω-6 PUFA-EA derivatives at a concentrations of 10 μM could significantly decrease mRNA levels of IL-6, IL-1β, and TNF-α, inhibit NO production, and alleviate the protein expression of IL-1β in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These data suggest that ω-3 PUFA-EA derivatives can be beneficial for further pharmaceutical development to treat chronic low-grade inflammation diseases such as obesity.
Collapse
Affiliation(s)
- Mengyu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaoqing Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Mengxian Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| |
Collapse
|
5
|
Peeters D, Pico-Knijnenburg I, Wieringa D, Rad M, Cuperus R, Ruige M, Froeling F, Zijp GW, van der Burg M, Driessen GJA. AKT Hyperphosphorylation and T Cell Exhaustion in Down Syndrome. Front Immunol 2022; 13:724436. [PMID: 35222360 PMCID: PMC8866941 DOI: 10.3389/fimmu.2022.724436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS) is associated with increased susceptibility to infections, auto-immunity, immunodeficiency and haematological malignancies. The exact underlying immunological pathophysiology is still unclear. The immunophenotype and clinical characteristics of DS resemble those of Activated PI3K Delta Syndrome (APDS), in which the PI3K/AKT/mTOR pathway is overactivated. We hypothesized that T cell exhaustion and the hyperactivation of the AKT signalling pathway is also present in immune cells of children with DS. In this observational non-interventional cohort study we collected blood samples of children with DS (n=22) and healthy age-matched controls (n=21) for flowcytometric immunophenotyping, phospho-flow AKT analysis and exhaustion analysis of T cells. The median age was 5 years (range 1-12y). Total T and NK cells were similar for both groups, but absolute values and transitional B cells, naive memory B cells and naive CD4+ and CD8+ T cells were lower in DS. pAKT and AKT were increased for CD3+ and CD4+ T cells and CD20+ B cells in children with DS. Total AKT was also increased in CD8+ T cells. Children with DS showed increased expression of inhibitory markers Programmed cell dealth-1 (PD-1), CD244 and CD160 on CD8+ T cells and increased PD-1 and CD244+ expression on CD4+ T cells, suggesting T cell exhaustion. Children with DS show increased pAKT and AKT and increased T cell exhaustion, which might contribute to their increased susceptibility to infections, auto immunity and haematological malignancies.
Collapse
Affiliation(s)
- Daphne Peeters
- Department of Pediatrics, Juliana Children's Hospital, The Hague, Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Douwe Wieringa
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Mandana Rad
- Department of Pediatric Anaesthesiology, Juliana Children's Hospital/Haga Teaching Hospital, The Hague, Netherlands
| | - Roos Cuperus
- Department of Pediatrics, Juliana Children's Hospital, The Hague, Netherlands
| | - Madelon Ruige
- Department of Pediatrics, Juliana Children's Hospital, The Hague, Netherlands
| | - Frank Froeling
- Department of Pediatric Urology, Juliana Children's Hospital, The Hague, Netherlands
| | - Gerda W Zijp
- Department of Paediatric Surgery, Juliana Children's Hospital, The Hague, Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, Netherlands
| | - Gertjan J A Driessen
- Department of Pediatrics, Juliana Children's Hospital, The Hague, Netherlands.,Department of Paediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
6
|
Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Res 2021; 9:1299. [PMID: 33633844 PMCID: PMC7871416 DOI: 10.12688/f1000research.27096.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background: People with Down Syndrome (DS) are born with an extra copy of Chromosome (Chr) 21 and many of these individuals develop Alzheimer’s Disease (AD) when they age. This is due at least in part to the extra copy of the APP gene located on Chr 21. By 40 years, most people with DS have amyloid plaques which disrupt brain cell function and increase their risk for AD. About half of the people with DS develop AD and the associated dementia around 50 to 60 years of age, which is about the age at which the hereditary form of AD, early onset AD, manifests. In the absence of Chr 21 trisomy, duplication of APP alone is a cause of early onset Alzheimer’s disease, making it likely that having three copies of APP is important in the development of AD and in DS. Methods: We investigate the relationship between AD and DS through integrative analysis of genesets derived from a MeSH query of AD and DS associated beta amyloid peptides, Chr 21, GWAS identified AD risk factor genes, and differentially expressed genes in individuals with DS. Results: Unique and shared aspects of each geneset were evaluated based on functional enrichment analysis, transcription factor profile and network interactions. Genes that may be important to both disorders in the context of direct association with APP processing, Tau post translational modification and network connectivity are ACSM1, APBA2, APLP1, BACE2, BCL2L, COL18A1, DYRK1A, IK, KLK6, METTL2B, MTOR, NFE2L2, NFKB1, PRSS1, QTRT1, RCAN1, RUNX1, SAP18 SOD1, SYNJ1, S100B. Conclusions: Our findings confirm that oxidative stress, apoptosis, inflammation and immune system processes likely contribute to the pathogenesis of AD and DS which is consistent with other published reports.
Collapse
Affiliation(s)
- Ayati Sharma
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | - Alisha Chunduri
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Asha Gopu
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | | | - Wim E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, 33615, France
| | - Anna Delprato
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France
| |
Collapse
|
7
|
Vasudevan A, Schukken KM, Sausville EL, Girish V, Adebambo OA, Sheltzer JM. Aneuploidy as a promoter and suppressor of malignant growth. Nat Rev Cancer 2021; 21:89-103. [PMID: 33432169 DOI: 10.1038/s41568-020-00321-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Aneuploidy has been recognized as a hallmark of tumorigenesis for more than 100 years, but the connection between chromosomal errors and malignant growth has remained obscure. New evidence emerging from both basic and clinical research has illuminated a complicated relationship: despite its frequency in human tumours, aneuploidy is not a universal driver of cancer development and instead can exert substantial tumour-suppressive effects. The specific consequences of aneuploidy are highly context dependent and are influenced by a cell's genetic and environmental milieu. In this Review, we discuss the diverse facets of cancer biology that are shaped by aneuploidy, including metastasis, drug resistance and immune recognition, and we highlight aneuploidy's distinct roles as both a tumour promoter and an anticancer vulnerability.
Collapse
|
8
|
Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer's disease in Down Syndrome. F1000Res 2020; 9:1299. [PMID: 33633844 DOI: 10.12688/f1000research.27096.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background: People with Down Syndrome (DS) are born with an extra copy of Chromosome (Chr) 21 and many of these individuals develop Alzheimer's Disease (AD) when they age. This is due at least in part to the extra copy of the APP gene located on Chr 21. By 40 years, most people with DS have amyloid plaques which disrupt brain cell function and increase their risk for AD. About half of the people with DS develop AD and the associated dementia around 50 to 60 years of age, which is about the age at which the hereditary form of AD, early onset AD, manifests. In the absence of Chr 21 trisomy, duplication of APP alone is a cause of early onset Alzheimer's disease, making it likely that having three copies of APP is important in the development of AD and in DS. In individuals with both DS and AD, early behavior and cognition-related symptoms may include a reduction in social behavior, decreased enthusiasm, diminished ability to pay attention, sadness, fearfulness or anxiety, irritability, uncooperativeness or aggression, seizures that begin in adulthood, and changes in coordination and walking. Methods: We investigate the relationship between AD and DS through integrative analysis of genesets derived from a MeSH query of AD and DS associated beta amyloid peptides, Chr 21, GWAS identified AD risk factor genes, and differentially expressed genes in DS individuals. Results: Unique and shared aspects of each geneset were evaluated based on functional enrichment analysis, transcription factor profile and network analyses. Genes that may be important to both disorders: ACSM1, APBA2, APLP1, BACE2, BCL2L, COL18A1, DYRK1A, IK, KLK6, METTL2B, MTOR, NFE2L2, NFKB1, PRSS1, QTRT1, RCAN1, RUNX1, SAP18 SOD1, SYNJ1, S100B. Conclusions: Our findings indicate that oxidative stress, apoptosis, and inflammation/immune system processes likely underlie the pathogenesis of AD and DS.
Collapse
Affiliation(s)
- Ayati Sharma
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | - Alisha Chunduri
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, 500075, India
| | - Asha Gopu
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA
| | | | - Wim E Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Pessac, 33615, France
| | - Anna Delprato
- BioScience Project, PO Box 352, Wakefield, MA, 01880, USA.,Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Pessac, 33615, France
| |
Collapse
|
9
|
Martínez-Espinosa RM, Molina Vila MD, Reig García-Galbis M. Evidences from Clinical Trials in Down Syndrome: Diet, Exercise and Body Composition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124294. [PMID: 32560141 PMCID: PMC7344556 DOI: 10.3390/ijerph17124294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Down syndrome (DS) is related to diseases like congenital heart disease, obstructive sleep apnea, obesity and overweight. Studies focused on DS associated with obesity and overweight are still scarce. The main objective of this work was to analyze the relationship between dietary intervention, physical exercise and body composition, in DS with overweight and obesity. This review is based on the PRISMA guidelines (Preferred Reporting Items for Systematic reviews and Meta-Analyses). Selection criteria for this analysis were: publications between January 1997 and December 2019; DS individuals with overweight and obesity; clinical trials using dietary intervention and physical exercise paying attention to changes in body composition. Selected clinical trials were focused on an exclusive intervention based on physical exercise. The anthropometric measures analyzed were body fat, BMI, waist circumference, body weight and fat free mass. The main conclusion is that prescribing structured physical exercise intervention may be related to a greater variation in body composition. Despite limited number of clinical trials analyzed, it can be assumed that the reported studies have not achieved optimal results and that the design of future clinical trials should be improved. Some guidelines are proposed to contribute to the improvement of knowledge in this field.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Division of Biochemistry and Molecular Biology, Department of Agrochemistry and Biochemistry, Faculty of Sciences, University of Alicante, 03690 Alicante, Spain;
- Applied Biochemistry Research Group AppBiochem, University of Alicante, 03690 Alicante, Spain;
| | - Mariola D Molina Vila
- Applied Biochemistry Research Group AppBiochem, University of Alicante, 03690 Alicante, Spain;
- Department of Mathematics, Faculty of Sciences, University of Alicante, 03690 Alicante, Spain
| | - Manuel Reig García-Galbis
- Applied Biochemistry Research Group AppBiochem, University of Alicante, 03690 Alicante, Spain;
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, Avda. Copayapu 2862, III Region, Copiapó 1530000, Chile
- Noncommunicable Diseases Research Group, Atacama 1410000, Chile
- Correspondence: ; Tel.: +34-52-225-5647
| |
Collapse
|
10
|
Umansky S. Aging and aging-associated diseases: a microRNA-based endocrine regulation hypothesis. Aging (Albany NY) 2019; 10:2557-2569. [PMID: 30375982 PMCID: PMC6224249 DOI: 10.18632/aging.101612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023]
Abstract
Although there are numerous hypotheses explaining the nature of aging and associated processes, two concepts are dominant: (i) aging is a result of cell-autonomous processes, such as the accumulation of DNA mutations, aberrant methylations, protein defects, and shortening of telomeres, leading to either inhibition of cellular proliferation and death of non-dividing terminally differentiated cells or tumor development; (ii) aging is a result of a central program that is switched on at a specific stage of organismic development. The microRNA-based endocrine regulation hypothesis combines the two above concepts by proposing central regulation of cell death occurrences via hypothalamus-pituitary gland (PG)-secreted miRNA hormones, the expression and/or secretion of which are regulated by sex hormones. This hypothesis explains such well-known phenomena as inverse comorbidity of either cancer or Alzheimer’s (AD) and other neurodegenerative diseases; higher AD morbidity and lower frequency of many common types of cancer in women vs. men; higher risk of early AD and lower risk of cancer in subjects with Down syndrome; longer life expectancy in women vs. men and much lower sex-dependent differences, if any, in other mammals; increased lifespans due to hypophysectomy or PG hypofunction; and parabiotic effects of blood or plasma transfusions between young and old animals.
Collapse
|