1
|
King A, Maisey T, Harris EL, Poulter JA, Jayne DG, Khot MI. The contradictory role of febuxostat in ABCG2 expression and potentiating hypericin-mediated photodynamic therapy in colorectal cancers. Photochem Photobiol Sci 2024; 23:1067-1075. [PMID: 38625651 DOI: 10.1007/s43630-024-00575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications.
Collapse
Affiliation(s)
- Aaron King
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK
| | - Thomas Maisey
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK
| | - Erica L Harris
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK
| | - James A Poulter
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK
| | - David G Jayne
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK
| | - M Ibrahim Khot
- School of Medicine, University of Leeds, St James University Hospital, Leeds, LS9 7TF, UK.
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK.
- Richmond Building, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK.
| |
Collapse
|
2
|
Halatsch ME. On fields, light and excitability in glioblastoma: Comment on: "The distinguishing electrical properties of cancer cells" by Di Gregorio et al. Phys Life Rev 2023; 47:15-16. [PMID: 37660430 DOI: 10.1016/j.plrev.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Affiliation(s)
- M-E Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, Brunngasse 30, CH-8401 Winterthur, Switzerland.
| |
Collapse
|
3
|
Ebrahimi S, Mirzavi F, Hashemy SI, Khaleghi Ghadiri M, Stummer W, Gorji A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors 2023; 49:900-911. [PMID: 37092793 DOI: 10.1002/biof.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
5
|
Johann P, Lenz D, Ries M. The drug development pipeline for glioblastoma-A cross sectional assessment of the FDA Orphan Drug Product designation database. PLoS One 2021; 16:e0252924. [PMID: 34234357 PMCID: PMC8263276 DOI: 10.1371/journal.pone.0252924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumour among adult patients and represents an almost universally fatal disease. Novel therapies for GBM are being developed under the orphan drug legislation and the knowledge on the molecular makeup of this disease has been increasing rapidly. However, the clinical outcomes in GBM patients with currently available therapies are still dismal. An insight into the current drug development pipeline for GBM is therefore of particular interest. OBJECTIVES To provide a quantitative clinical-regulatory insight into the status of FDA orphan drug designations for compounds intended to treat GBM. METHODS Quantitative cross-sectional analysis of the U.S. Food and Drug Administration Orphan Drug Product database between 1983 and 2020. STROBE criteria were respected. RESULTS Four orphan drugs out of 161 (2,4%) orphan drug designations were approved for the treatment for GBM by the FDA between 1983 and 2020. Fourteen orphan drug designations were subsequently withdrawn for unknown reasons. The number of orphan drug designations per year shows a growing trend. In the last decade, the therapeutic mechanism of action of designated compounds intended to treat glioblastoma shifted from cytotoxic drugs (median year of designation 2008) to immunotherapeutic approaches and small molecules (median year of designation 2014 and 2015 respectively) suggesting an increased focus on precision in the therapeutic mechanism of action for compounds the development pipeline. CONCLUSION Despite the fact that current pharmacological treatment options in GBM are sparse, the drug development pipeline is steadily growing. In particular, the surge of designated immunotherapies detected in the last years raises the hope that elaborate combination possibilities between classical therapeutic backbones (radiotherapy and chemotherapy) and novel, currently experimental therapeutics may help to provide better therapies for this deadly disease in the future.
Collapse
Affiliation(s)
- Pascal Johann
- German Cancer Research Center (DKFZ), Division of Paediatric Neurooncology, Heidelberg, Germany
- Paediatric and Adolescent Medicine, Swabian Children’s Cancer Center Augsburg, Augsburg, Germany
| | - Dominic Lenz
- Paediatric Neurology and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Paediatric Neurology and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Center for Rare Disorders, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Antitumor Effects of 5-Aminolevulinic Acid on Human Malignant Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms22115596. [PMID: 34070493 PMCID: PMC8199444 DOI: 10.3390/ijms22115596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/09/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a naturally occurring non-proteinogenic amino acid, which contributes to the diagnosis and therapeutic approaches of various cancers, including glioblastoma (GBM). In the present study, we aimed to investigate whether 5-ALA exerted cytotoxic effects on GBM cells. We assessed cell viability, apoptosis rate, mRNA expressions of various apoptosis-related genes, generation of reactive oxygen species (ROS), and migration ability of the human U-87 malignant GBM cell line (U87MG) treated with 5-ALA at different doses. The half-maximal inhibitory concentration of 5-ALA on U87MG cells was 500 μg/mL after 7 days; 5-ALA was not toxic for human optic cells and NIH-3T3 cells at this concentration. The application of 5-ALA led to a significant increase in apoptotic cells, enhancement of Bax and p53 expressions, reduction in Bcl-2 expression, and an increase in ROS generation. Furthermore, the application of 5-ALA increased the accumulation of U87MG cells in the SUB-G1 population, decreased the expression of cyclin D1, and reduced the migration ability of U87MG cells. Our data indicate the potential cytotoxic effects of 5-ALA on U87MG cells. Further studies are required to determine the spectrum of the antitumor activity of 5-ALA on GBM.
Collapse
|
7
|
Schmidt HM, Wood KC, Lewis SE, Hahn SA, Williams XM, McMahon B, Baust JJ, Yuan S, Bachman TN, Wang Y, Oh JY, Ghosh S, Ofori-Acquah SF, Lebensburger JD, Patel RP, Du J, Vitturi DA, Kelley EE, Straub AC. Xanthine Oxidase Drives Hemolysis and Vascular Malfunction in Sickle Cell Disease. Arterioscler Thromb Vasc Biol 2021; 41:769-782. [PMID: 33267657 PMCID: PMC8185582 DOI: 10.1161/atvbaha.120.315081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.
Collapse
Affiliation(s)
- Heidi M. Schmidt
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katherine C. Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sara E. Lewis
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Scott A. Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xena M. Williams
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Brenda McMahon
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey J. Baust
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy N. Bachman
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University, Morgantown, WV
| | - Joo-Yeun Oh
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Samit Ghosh
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Solomon F. Ofori-Acquah
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | | | - Rakesh P. Patel
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University, Morgantown, WV
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric E. Kelley
- Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Torti SV, Torti FM. Iron: The cancer connection. Mol Aspects Med 2020; 75:100860. [PMID: 32340745 DOI: 10.1016/j.mam.2020.100860] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/06/2023]
Abstract
Iron plays an essential role in normal biological processes: The generation of cellular energy, oxygen transport, DNA synthesis and repair are all processes that require iron-coordinated proteins, either as elemental iron, heme or iron-sulfur clusters. As a transition metal with two major biological oxidation states, iron is also a critical intermediate in the generation of reactive oxygen species that can damage cellular structures and contribute to both aging and cancer. In this review, we focus on experimental and epidemiologic evidence that links iron and cancer, as well as strategies that have been proposed to either reduce or increase cellular iron for cancer therapy.
Collapse
Affiliation(s)
- Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
9
|
Cramer SW, Chen CC. Photodynamic Therapy for the Treatment of Glioblastoma. Front Surg 2020; 6:81. [PMID: 32039232 PMCID: PMC6985206 DOI: 10.3389/fsurg.2019.00081] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common form of adult brain cancer and remains one of the deadliest of human cancers. The current standard-of-care involves maximal tumor resection followed by treatment with concurrent radiation therapy and the chemotherapy temozolomide. Recurrence after this therapy is nearly universal within 2 years of diagnosis. Notably, >80% of recurrence is found in the region adjacent to the resection cavity. The need for improved local control in this region, thus remains unmet. The FDA approval of 5-aminolevulinic acid (5-ALA) for fluorescence guided glioblastoma resection renewed interests in leveraging this agent as a means to administer photodynamic therapy (PDT). Here we review the general principles of PDT as well as the available literature on PDT as a glioblastoma therapeutic platform.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
A New Treatment Opportunity for DIPG and Diffuse Midline Gliomas: 5-ALA Augmented Irradiation, the 5aai Regimen. Brain Sci 2020; 10:brainsci10010051. [PMID: 31963414 PMCID: PMC7016657 DOI: 10.3390/brainsci10010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Prognosis for diffuse intrinsic pontine glioma (DIPG) and generally for diffuse midline gliomas (DMG) has only marginally improved over the last ~40 years despite dozens of chemotherapy and other therapeutic trials. The prognosis remains invariably fatal. We present here the rationale for a planned study of adding 5-aminolevulinic acid (5-ALA) to the current irradiation of DIPG or DMG: the 5aai regimen. In a series of recent papers, oral 5-ALA was shown to enhance standard therapeutic ionizing irradiation. 5-ALA is currently used in glioblastoma surgery to enable demarcation of overt tumor margins by virtue of selective uptake of 5-ALA by neoplastic cells and selective conversion to protoporphyrin IX (PpIX), which fluoresces after excitation by 410 nm (blue) light. 5-ALA is also useful in treating glioblastomas by virtue of PpIX's transfer of energy to O2 molecules, producing a singlet oxygen that in turn oxidizes intracellular DNA, lipids, and proteins, resulting in selective malignant cell cytotoxicity. This is called photodynamic treatment (PDT). Shallow penetration of light required for PpIX excitation and resultant energy transfer to O2 and cytotoxicity results in the inaccessibility of central structures like the pons or thalamus to sufficient light. The recent demonstration that keV and MeV photons can also excite PpIX and generate singlet O2 allows for reconsideration of 5-ALA PDT for treating DMG and DIPG. 5-ALA has an eminently benign side effect profile in adults and children. A pilot study in DIPG/DMG of slow uptitration of 5-ALA prior to each standard irradiation session-the 5aai regimen-is warranted.
Collapse
|
11
|
Woo PY, Gai X, Wong HT, Chan KY. In Reply to the Letter to the Editor Regarding “A Novel Wavelength-Specific Blue Light-Emitting Headlamp for 5-Aminolevulinic Acid Fluorescence-Guided Resection of Glioblastoma.”. World Neurosurg 2020; 133:438-439. [DOI: 10.1016/j.wneu.2019.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
12
|
Spectroscopic measurement of 5-ALA-induced intracellular protoporphyrin IX in pediatric brain tumors. Acta Neurochir (Wien) 2019; 161:2099-2105. [PMID: 31435824 DOI: 10.1007/s00701-019-04039-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE 5-Aminolevulinic acid (5-ALA)-guided resection of gliomas in adults enables better delineation between tumor and normal brain, allowing improved resection and improved patients' outcome. Recently, several reports were published regarding 5-ALA for resection of pediatric brain tumors. The aim of the study was to determine the intracellular fluorescence of protoporphyrin IX (PPIX) in pediatric brain tumors by hyperspectral imaging and to compare it with visually observed intraoperative fluorescence. METHODS 5-ALA was administered orally 4 h prior to surgery. During tumor resection, the surgeon assessed the fluorescence signal to be strong, weak, or absent. Subsequently, fluorescence intensity of tumor samples was measured via spectroscopy. In addition, clinical data, imaging, and laboratory data were analyzed. RESULTS Eleven children (1-16 years) were operated. Tumor entities included three (n = 3) medulloblastomas, two (n = 2) pilocytic astrocytomas (PA), two (n = 2) anaplastic ependymomas and one (n = 1) diffuse astrocytoma, anaplastic astrocytoma (n = 1), pilomyxoid astrocytoma (n = 1) and anaplastic pleomorphic xanthoastrocytoma (n = 1). Strong fluorescence was visible in all anaplastic tumors and one PA; one PA demonstrated weak fluorescence. Visible fluorescence was strongly associated with intracellular fluorescence intensity and PPIX concentration (P < 0.05). Within all tumors with visible fluorescence, the intracellular PPIX concentration was greater than 4 μg/ml. Except for moderate and transient elevation of liver enzymes, no 5-ALA related adverse events were reported. CONCLUSION We demonstrate a strong association between intraoperative observations and spectrometric measurements of PPIX fluorescence in tumor tissue. As in former studies, fluorescence signal was more commonly observed in malignant glial tumors. Further prospective controlled trials should be conducted to investigate the feasibility of 5-ALA-guided resection of pediatric brain tumors.
Collapse
|