1
|
Basiouni S, Tellez-Isaias G, Latorre JD, Graham BD, Petrone-Garcia VM, El-Seedi HR, Yalçın S, El-Wahab AA, Visscher C, May-Simera HL, Huber C, Eisenreich W, Shehata AA. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet Sci 2023; 10:55. [PMID: 36669057 PMCID: PMC9866488 DOI: 10.3390/vetsci10010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal's microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted.
Collapse
Affiliation(s)
- Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 58190, Mexico
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
| | - Helen L. May-Simera
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
| | - Claudia Huber
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Wolfgang Eisenreich
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| |
Collapse
|
2
|
Simultaneous Removal of Mycotoxins by a New Feed Additive Containing a Tri-Octahedral Smectite Mixed with Lignocellulose. Toxins (Basel) 2022; 14:toxins14060393. [PMID: 35737054 PMCID: PMC9229468 DOI: 10.3390/toxins14060393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Simultaneous removal of mycotoxins has been poorly addressed, and a limited number of studies have reported the efficacy of feed additives in sequestering a large spectrum of mycotoxins. In this study, a new mycotoxin-adsorbing agent was obtained by properly mixing a tri-octahedral smectite with a lignocellulose-based material. At a dosage of 1 mg mL−1, these materials simultaneously adsorbed frequently occurring mycotoxins and did not exert a cytotoxic effect on intestinal cells. Chyme samples obtained by a simulated GI digestion did not affect the viability of Caco-2TC7 cells as measured by the MTT test. In addition, the chyme of the lignocellulose showed a high content of polyphenols (210 mg mL−1 catechin equivalent) and good antioxidant activity. The properties of the individual constituents were maintained in the final composite, and were unaffected by their combination. When tested with a pool of seven mycotoxins at 1 µg mL−1 each and pH 5, the composite (5 mg mL−1) simultaneously sequestered AFB1 (95%), FB1 (99%), ZEA (93%), OTA (80%), T-2 (63%), and DON (22%). HT-2 adsorption did not occur. Mycotoxin adsorption increased exponentially as dosage increased, and occurred at physiological pH values. AFB1, ZEA and T-2 adsorption was not affected by pH in the range 3–9, whereas OTA and FB1 were adsorbed at pH values of 3–5. The adsorbed amount of AFB1, ZEA and T-2 was not released when pH rose from 3 to 7. FB1 and OTA desorption was less than 38%. Langmuir adsorption isotherms revealed high capacity and affinity for adsorption of the target mycotoxins. Results of this study are promising and show the potential of the new composite to remove mycotoxins in practical scenarios where several mycotoxins can co-occur.
Collapse
|
3
|
The Reduction of the Combined Effects of Aflatoxin and Ochratoxin A in Piglet Livers and Kidneys by Dietary Antioxidants. Toxins (Basel) 2021; 13:toxins13090648. [PMID: 34564652 PMCID: PMC8472784 DOI: 10.3390/toxins13090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to investigate the combined effects of aflatoxin B1 and ochratoxin A on protein expression and catalytic activities of CYP1A2, CYP2E1, CYP3A29 and GSTA1 and the preventive effect of dietary byproduct antioxidants administration against these mycotoxin damage. Three experimental groups (E1, E2, E3) and one control group (C) of piglets after weaning (TOPIGS-40 hybrid) were fed with experimental diets for 30 days. A basal diet containing normal compound feed for starter piglets was used as a control treatment and free of mycotoxin. The experimental groups were fed as follows: E1—basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal), E2—the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1) and E3—basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform microsomal fraction isolation, followed by protein expression and enzymatic analyses. The protein expressions of CYP2E1 and CYP3A29 were up-regulated in an insignificant manner in liver, whereas in kidney, those of CYP1A2, CYP2E1 and CYP3A29 were down-regulated. The enzymatic activities of CYP1A2, CYP2E1 and CYP3A29 decreased in liver, in a significant manner, whereas in kidney, these increased significantly. The co-presence of the two mycotoxins and the mixture of grape seed and sea buckthorn meal generated a tendency to return to the control values, which suggest that grapeseed and sea buckthorn meal waste represent a promising source in counteracting the harmful effect of ochratoxin A and aflatoxin B.
Collapse
|