1
|
Cordani N, Nova D, Sala L, Abbate MI, Colonese F, Cortinovis DL, Canova S. Proteolysis Targeting Chimera Agents (PROTACs): New Hope for Overcoming the Resistance Mechanisms in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:11214. [PMID: 39456995 PMCID: PMC11508910 DOI: 10.3390/ijms252011214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniele Nova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Luca Sala
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Maria Ida Abbate
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Francesca Colonese
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Diego Luigi Cortinovis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Stefania Canova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| |
Collapse
|
2
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Villa M, Malighetti F, Sala E, Sharma GG, Arosio G, Gemelli M, Manfroni C, Fontana D, Cordani N, Meneveri R, Zambon A, Piazza R, Pagni F, Cortinovis D, Mologni L. New pan-ALK inhibitor-resistant EML4::ALK mutations detected by liquid biopsy in lung cancer patients. NPJ Precis Oncol 2024; 8:29. [PMID: 38448512 PMCID: PMC10918084 DOI: 10.1038/s41698-024-00498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 03/08/2024] Open
Abstract
ALK and ROS1 fusions are effectively targeted by tyrosine kinase inhibitors (TKIs), however patients inevitably relapse after an initial response, often due to kinase domain mutations. We investigated circulating DNA from TKI-relapsed NSCLC patients by deep-sequencing. New EML4::ALK substitutions, L1198R, C1237Y and L1196P, were identified in the plasma of NSCLC ALK patients and characterized in a Ba/F3 cell model. Variants C1237Y and L1196P demonstrated pan-inhibitor resistance across 5 clinical and 2 investigational TKIs.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Sala
- SC Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Geeta G Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Arosio
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Gemelli
- SC Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Chiara Manfroni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nicoletta Cordani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Meneveri
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Diego Cortinovis
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- SC Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
5
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
6
|
Balasundaram A, C Doss GP. Comparative Atomistic Insights on Apo and ATP-I1171N/S/T in Nonsmall-Cell Lung Cancer. ACS OMEGA 2023; 8:43856-43872. [PMID: 38027370 PMCID: PMC10666221 DOI: 10.1021/acsomega.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements occur in about 5% of nonsmall cell lung cancer (NSCLC) patients. Despite being first recognized as EML4-ALK, fusions with several additional genes have been identified, all of which cause constitutive activation of the ALK kinase and subsequently lead to tumor development. ALK inhibitors first-line crizotinib, second-line ceritinib, and alectinib are effective against NSCLC patients with these rearrangements. Patients progressing on crizotinib had various mutations in the ALK kinase domain. ALK fusion proteins are activated by oligomerization through the fusion partner, which leads to the autophosphorylation of the kinase's domain and consequent downstream activation. The proposed computational study focuses on understanding the activation mechanism of ALK and ATP binding of wild-type (WT) and I1171N/S/T mutations. We analyzed the conformational change of ALK I1171N/S/T mutations and ATP binding using molecular docking and molecular dynamics simulation approaches. According to principal component analysis and free energy landscape, it is clear that I1171N/S/T mutations in Apo and ATP showed different energy minima/unstable structures compared to WT-Apo. The results revealed that I1171N/S/T mutations and ATP binding significantly supported a change toward an active-state conformation, whereas WT-Apo remained inactive. We demonstrated that I1171N/S/T mutations are persistent in an active state and independent of ATP. The I1171S/T mutations showed greater intermolecular H-bonds with ATP than WT-ATP. The molecular mechanics Poisson-Boltzmann surface area analysis revealed that the I1171N/S/T mutation binding energy was similar to that of WT-ATP. This study shows that I1171N/S/T can form stable bonds with ATP and may contribute to a constitutively active kinase. Based on the Y1278-C1097 H-bond and E1167-K1150 salt bridge interaction, I1171N strongly promotes the constitutively active kinase independent of ATP. This structural mechanism study will aid in understanding the oncogenic activity of ALK and the basis for improving the ALK inhibitors.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
7
|
Mota I, Patrucco E, Mastini C, Mahadevan NR, Thai TC, Bergaggio E, Cheong TC, Leonardi G, Karaca-Atabay E, Campisi M, Poggio T, Menotti M, Ambrogio C, Longo DL, Klaeger S, Keshishian H, Sztupinszki ZM, Szallasi Z, Keskin DB, Duke-Cohan JS, Reinhold B, Carr SA, Wu CJ, Moynihan KD, Irvine DJ, Barbie DA, Reinherz EL, Voena C, Awad MM, Blasco RB, Chiarle R. ALK peptide vaccination restores the immunogenicity of ALK-rearranged non-small cell lung cancer. NATURE CANCER 2023; 4:1016-1035. [PMID: 37430060 DOI: 10.1038/s43018-023-00591-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.
Collapse
Affiliation(s)
- Ines Mota
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elisa Bergaggio
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Giulia Leonardi
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | | | - Marco Campisi
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario L Longo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Imaging Center, University of Torino, Torino, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino, Italy
| | - Susan Klaeger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Zsófia M Sztupinszki
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce Reinhold
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ellis L Reinherz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mark M Awad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
8
|
Mastini C, Campisi M, Patrucco E, Mura G, Ferreira A, Costa C, Ambrogio C, Germena G, Martinengo C, Peola S, Mota I, Vissio E, Molinaro L, Arigoni M, Olivero M, Calogero R, Prokoph N, Tabbò F, Shoji B, Brugieres L, Geoerger B, Turner SD, Cuesta-Mateos C, D’Aliberti D, Mologni L, Piazza R, Gambacorti-Passerini C, Inghirami GG, Chiono V, Kamm RD, Hirsch E, Koch R, Weinstock DM, Aster JC, Voena C, Chiarle R. Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma. Sci Transl Med 2023; 15:eabo3826. [PMID: 37379367 PMCID: PMC10804420 DOI: 10.1126/scitranslmed.abo3826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.
Collapse
Affiliation(s)
- Cristina Mastini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Marco Campisi
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10129, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Antonio Ferreira
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Carlotta Costa
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giulia Germena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Silvia Peola
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Ines Mota
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Vissio
- Department of Oncology, University of Torino, Orbassano, Torino 10043, Italy
| | - Luca Molinaro
- Department of Medical Science, University of Torino, Torino 10126, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Martina Olivero
- Department of Oncology, University of Torino, Orbassano, Torino 10043, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino 10060, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Fabrizio Tabbò
- Department of Pathology, Cornell University, New York NY 10121, USA
| | - Brent Shoji
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif 94805, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif 94805, France
- Université Paris-Saclay, INSERM U1015, Villejuif 94805, France
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Faculty of Medicine, Masaryk University, Brno 601 77, Czech Republic
| | - Carlos Cuesta-Mateos
- Department of Pre-Clinical Development, Catapult Therapeutics B.V., 8243 RC, Lelystad, Netherlands
| | - Deborah D’Aliberti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza 20900, Italy
| | | | | | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico of Torino, Torino 10129, Italy
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Raphael Koch
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- University Medical Center Göttingen, 37075 Göttingen, Germany
| | - David M. Weinstock
- Dana Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Wu Y, Huang L, Li W, Chai Y. Neoadjuvant target therapy with ensartinib in lung adenocarcinoma with EML4-ALK fusion variant: a case report and literature review. Anticancer Drugs 2023; 34:699-706. [PMID: 36730477 DOI: 10.1097/cad.0000000000001432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although neoadjuvant target therapy has been used to treat patients with non-small-cell lung cancer (NSCLC), most of these patients have mutations in the epidermal growth factor receptor (EGFR) gene. Few patients to date have received neoadjuvant target therapy for NSCLC containing variants in genes encoding anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs). Herein, we present a 51-year-old man with a lung mass in the left lower lobe with enlarged mediastinal lymph nodes. He was diagnosed with NSCLC after needle lung biopsy, with next-generation sequencing showing an echinoderm microtubule-associated protein-like 4 gene-anaplastic lymphoma kinase (EML4-ALK) fusion variant. The patient received neoadjuvant ensartinib, a second-generation ALK-TKI, for 5 months, followed by successful lobectomy through uniportal video-assisted thoracic surgery and adjuvant ensartinib. To our knowledge, few patients with ALK-positive NSCLC had received neoadjuvant treatment with ensartinib. Findings in this patient may widen indications for neoadjuvant target therapy in the treatment of resectable stage II-IIIA ALK-positive NSCLC.
Collapse
Affiliation(s)
- Yimin Wu
- Department of Thoracic Surgery, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
10
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Zhang W, Qu S, Chen Q, Yang X, Yu J, Zeng S, Chu Y, Zou H, Zhang Z, Wang X, Jing R, Wu Y, Liu Z, Xu R, Wu C, Huang C, Huang J. Development and characterization of reference materials for EGFR, KRAS, NRAS, BRAF, PIK3CA, ALK, and MET genetic testing. Technol Health Care 2023; 31:485-495. [PMID: 36093718 DOI: 10.3233/thc-220102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Along with the dramatic development of molecular diagnostic testing for the detection of oncogene variations, reference materials (RMs) have become increasingly important in performance evaluation of genetic testing. OBJECTIVE In this study, we built a set of RMs for genetic testing based on next-generation sequencing (NGS). METHOD Solid tumor tissues were selected as the samples of RMs for preparation. NGS was used to determine and validate the variants and the mutation frequency in DNA samples. Digital PCR was used to determine the copy numbers of RNA samples. The performance of the RMs was validated by six laboratories. RESULTS Thirty common genetic alterations were designed based on these RMs. RMs consisted of a positive reference, a limit of detection reference, and a negative reference. The validation results confirmed the performance of the RMs. CONCLUSION These RMs may be an attractive tool for the development, validation, and quality monitoring of molecular genetic testing.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shoufang Qu
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Qiong Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xuexi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Shuang Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yuxing Chu
- Geneplus-Beijing Clinical Laboratory Co., Ltd., Beijing, China
| | - Hao Zou
- Novogene (Tianjin) Bioinformatics Technology Co., Ltd., Tianjin, China
| | - Zhihong Zhang
- Guangzhou Burning Rock Dx Co., Ltd., Guangzhou, Guangdong, China
| | | | | | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Liu
- Research Institute, Guangzhou Darui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ren Xu
- Shanghai Yuanqi Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanfeng Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jie Huang
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
12
|
Inhibition of PI3 kinase isoform p110α suppresses neuroblastoma growth and induces the reduction of Anaplastic Lymphoma Kinase. Cell Biosci 2022; 12:210. [PMID: 36585695 PMCID: PMC9801621 DOI: 10.1186/s13578-022-00946-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In neuroblastoma, hyperactivation of the PI3K signaling pathway has been correlated with aggressive neuroblastomas, suggesting PI3Ks as promising targets for the treatment of neuroblastoma. However, the oncogenic roles of individual PI3K isoforms in neuroblastoma remain elusive. RESULTS We found that PI3K isoform p110α was expressed at higher levels in neuroblastoma tissues compared with normal tissues, and its high expression was correlated with an unfavorable prognosis of neuroblastoma. Accordingly, PI3K activation in neuroblastoma cells was predominantly mediated by p110α but not by p110β or p110δ. Suppression of p110α inhibited the growth of neuroblastoma cells both in vitro and in vivo, suggesting a crucial role of p110α in the tumorigenesis of neuroblastoma. Mechanistically, inhibition of p110α decreased anaplastic lymphoma kinase (ALK) in neuroblastoma cells by decreasing its protein stability. CONCLUSIONS In this study, we investigated the oncogenic roles of PI3K isoforms in neuroblastoma. Our data shed light on PI3K isoform p110α in the tumorigenesis of neuroblastoma, and strongly suggest the p110α inhibitors as potential drugs in treating neuroblastoma.
Collapse
|
13
|
Lin J, Liu J, Hao SG, Lan B, Zheng XB, Xiong JN, Zhang YQ, Gao X, Chen CB, Chen L, Huang YF, Luo H, Yi YT, Yi X, Lu JP, Zheng XW, Chen G, Wang XF, Chen Y. An EGFR L858R mutation identified in 1862 Chinese NSCLC patients can be a promising neoantigen vaccine therapeutic strategy. Front Immunol 2022; 13:1022598. [PMID: 36505399 PMCID: PMC9727402 DOI: 10.3389/fimmu.2022.1022598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to develop a vaccine that targets mutation-derived neoantigen in Chinese non-small-cell lung cancer (NSCLC). Methods A cohort of 1862 Chinese NSCLC patients who underwent targeted sequencing with a 1021-gene panel was investigated. HLA typing was done using OptiType v1.0 and neoantigens were predicted by netMHCpan v4.0. HLA LOH was inferred using the lohhla algorithm and TMB were quantified by counting the total number of non-synonymous ones based on our panel data. CIBERSORT was utilized to estimate the TME in different EGFR mutant subtype by using TCGA data. Results HLA-A*11:01(42.59%) was the top one allele and HLA-A*33:03(12.94%) ranked 12th. EGFR L858R (22.61%) was the most prevalent gene variant. The binding affinity (IC50 MT = 22.9 nM) and shared frequency (2.93%) of EGFR L858R in combination with HLA-A*33:03 were optimal. In a subsequent further analysis on immunological features of EGFR mutant subtypes, 63.1% HLA loss of heterozygosity LOH (HLA LOH) and 0.37% (7 of 1862) B2M aberrations were found in our population, both had no significant association with EGFR mutant subtypes suggesting that the process of antigen presentation involved HLA LOH and B2M mechanisms in EGFR L858R is working. Tumor mutation burden (TMB) was investigated by utilizing our panel and showed that EGFR L858R had the lowest TMB compared with other EGFR mutant subtypes. In addition, analysis of 22 immune cell types from The Cancer Genome Atlas (TCGA) data showed EGFR L858R was correlated with low level of CD8 T cells, activated CD4 memory T cells and elevated level of macrophage M2 suggesting an inhibited tumor microenvironment (TME). Conclusion Our study identified that EGFR L858R neoantigen had the potential to generate cancer vaccines in NSCLC patients with HLA A*33:03. The neoantigen-based vaccines may become an effective salvage regimen for EGFR L858R subgroup after targeted therapy or immune checkpoint inhibitors (ICIs) failure.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun Liu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | | | - Bin Lan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiao-bin Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jia-ni Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | | | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,Department of Translational Medicine, GenePlus- Shenzhen Clinical Laboratory, ShenZhen, China
| | - Chuan-ben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ling Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu-fang Huang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Hong Luo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yu-ting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Jian-ping Lu
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiong-wei Zheng
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xue-feng Wang
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China,*Correspondence: Yu Chen, ; Xue-feng Wang,
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China,*Correspondence: Yu Chen, ; Xue-feng Wang,
| |
Collapse
|
14
|
Garces de Los Fayos Alonso I, Zujo L, Wiest I, Kodajova P, Timelthaler G, Edtmayer S, Zrimšek M, Kollmann S, Giordano C, Kothmayer M, Neubauer HA, Dey S, Schlederer M, Schmalzbauer BS, Limberger T, Probst C, Pusch O, Högler S, Tangermann S, Merkel O, Schiefer AI, Kornauth C, Prutsch N, Zimmerman M, Abraham B, Anagnostopoulos J, Quintanilla-Martinez L, Mathas S, Wolf P, Stoiber D, Staber PB, Egger G, Klapper W, Woessmann W, Look TA, Gunning P, Turner SD, Moriggl R, Lagger S, Kenner L. PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma. Mol Cancer 2022; 21:172. [PMID: 36045346 PMCID: PMC9434917 DOI: 10.1186/s12943-022-01640-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. METHODS AND RESULTS In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. CONCLUSIONS We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.
Collapse
Affiliation(s)
- I Garces de Los Fayos Alonso
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Zujo
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - I Wiest
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - P Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - G Timelthaler
- Center for Cancer Research, Medical University of Vienna, 1090, Vienna, Austria
| | - S Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - M Zrimšek
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - C Giordano
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Kothmayer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - H A Neubauer
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Dey
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria
| | - M Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - B S Schmalzbauer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - T Limberger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria
| | - C Probst
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - O Pusch
- Centre for Anatomy and Cell Biology, Medical University of Vienna, 1090, Vienna, Austria
| | - S Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - O Merkel
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - A I Schiefer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - C Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - N Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - B Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Anagnostopoulos
- Institute of Pathology, University of Wuerzburg, 97080, Würzburg, Germany
- Institute of Pathology, Charité-Medical University of Berlin, 10117, Berlin, Germany
| | - L Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Cluster of excellence iFIT, "Image-Guided and Functionally Instructed Tumor Therapy", University of Tübingen, 72076, Tübingen, Germany
| | - S Mathas
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Medical University of Berlin, 12200, Berlin, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation between the Charité and the MDC, 13125, Berlin, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, 8036, Graz, Austria
| | - D Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - P B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - G Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
- Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
| | - W Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel/University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - W Woessmann
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - T A Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - S D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - R Moriggl
- Institute of Animal Breeding and Genetics, Unit of Functional Cancer Genomics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - S Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - L Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Division of Nuclear Medicine, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Medical Research (ZMF), Medical University of Graz, 8010, Graz, Austria.
- CBMed Core Lab, Medical University of Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory of Applied Metabolomics, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Mosaieby E, Martínek P, Ondič O. The significance of the fusion partner gene genomic neighborhood analysis in translocation-defined tumors. Mol Genet Genomic Med 2022; 10:e1994. [PMID: 35621010 PMCID: PMC9356546 DOI: 10.1002/mgg3.1994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION This study presents a novel molecular parameter potentially co-defining tumor biology-the total tumor suppressor gene (TSG) count at chromosomal loci harboring genes rearranged in fusion-defined tumors. It belongs to the family of molecular parameters created using a black-box approach. METHOD It is based on a public curated Texas TSG database. Its data are regrouped based on individual genes loci using another public database (Genecards). The total TSG count for NTRK (NTRK1; OMIM: 191315; NTRK2; OMIM: 600456; NTRK3; OMIM: 191316), NRG1 (OMIM: 142445), and RET (OMIM: 164761) rearranged tumors in patients treated with a theranostic approach is calculated using the results of recently published studies. RESULTS Altogether 138 loci containing at least three TSGs are identified. These include 21 "extremely hot" spots, with 10 to 28 TSGs mapping to a given locus. However, the study falls short of finding a correlation between tumor regression or patient survival and the TSG count owing to a low number of cases meeting the study criteria. CONCLUSION The total TSG count alone cannot predict the biology of translocation-defined tumors. The addition of other parameters, including microsatellite instability (MSI), tumor mutation burden (TMB), homologous recombination repair deficiency (HRD), and copy number heterogeneity (CNH), might be helpful. Thus a multi-modal data integration is advocated. We believe that large scale studies should evaluate the significance and value of the total TSG count.
Collapse
Affiliation(s)
- Elaheh Mosaieby
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic.,Department of Pathology, Medical Faculty in Pilsen, Charles University, Prague, Czech Republic
| | - Petr Martínek
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic
| | - Ondrej Ondič
- Molecular Genetics Department, Bioptická Laboratoř s.r.o., Pilsen, Czech Republic.,Department of Pathology, Medical Faculty in Pilsen, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Mologni L, Tardy S, Zambon A, Orsato A, Bisson WH, Ceccon M, Viltadi M, D’Attoma J, Pannilunghi S, Vece V, Bertho J, Goekjian P, Scapozza L, Gambacorti-Passerini C. Discovery of Novel α-Carboline Inhibitors of the Anaplastic Lymphoma Kinase. ACS OMEGA 2022; 7:17083-17097. [PMID: 35647450 PMCID: PMC9134258 DOI: 10.1021/acsomega.2c00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The anaplastic lymphoma kinase (ALK) is abnormally expressed and hyperactivated in a number of tumors and represents an ideal therapeutic target. Despite excellent clinical responses to ALK inhibition, drug resistance still represents an issue and novel compounds that overcome drug-resistant mutants are needed. We designed, synthesized, and evaluated a large series of azacarbazole inhibitors. Several lead compounds endowed with submicromolar potency were identified. Compound 149 showed selective inhibition of native and mutant drug-refractory ALK kinase in vitro as well as in a Ba/F3 model and in human ALK+ lymphoma cells. The three-dimensional (3D) structure of a 149:ALK-KD cocrystal is reported, showing extensive interaction through the hinge region and the catalytic lysine 1150.
Collapse
Affiliation(s)
- Luca Mologni
- Dept.
of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
- Galkem
srl, Monza 20900, Italy
| | - Sébastien Tardy
- Laboratoire
Chimie Organique 2-Glycochimie, CNRS-Université
Claude Bernard Lyon 1, Lyon 69100, France
- School
of Pharmaceutical Sciences, University of
Geneva, Geneva 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Alfonso Zambon
- Department
of Chemistry and Geological Sciences, University
of Modena and Reggio Emilia, Modena 41125, Italy
| | - Alexandre Orsato
- Laboratoire
Chimie Organique 2-Glycochimie, CNRS-Université
Claude Bernard Lyon 1, Lyon 69100, France
- Department
of Chemistry, Universidade Estadual de Londrina, Paraná 86057-970, Brazil
| | - William H. Bisson
- School
of Pharmaceutical Sciences, University of
Geneva, Geneva 1211, Switzerland
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97227, United States
| | - Monica Ceccon
- Dept.
of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Michela Viltadi
- Dept.
of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Joseph D’Attoma
- Laboratoire
Chimie Organique 2-Glycochimie, CNRS-Université
Claude Bernard Lyon 1, Lyon 69100, France
| | - Sara Pannilunghi
- School
of Pharmaceutical Sciences, University of
Geneva, Geneva 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Vito Vece
- Dept.
of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | | | - Peter Goekjian
- Galkem
srl, Monza 20900, Italy
- Laboratoire
Chimie Organique 2-Glycochimie, CNRS-Université
Claude Bernard Lyon 1, Lyon 69100, France
| | - Leonardo Scapozza
- Galkem
srl, Monza 20900, Italy
- School
of Pharmaceutical Sciences, University of
Geneva, Geneva 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Carlo Gambacorti-Passerini
- Dept.
of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
- Galkem
srl, Monza 20900, Italy
| |
Collapse
|
17
|
Mologni L, Orsato A, Zambon A, Tardy S, Bisson WH, Ceccon M, Viltadi M, D'Attoma J, Pannilunghi S, Vece V, Bertho J, Scapozza L, Goekjian P, Gambacorti-Passerini C. Identification of non-ATP-competitive α-carboline inhibitors of the anaplastic lymphoma kinase. Eur J Med Chem 2022; 238:114488. [DOI: 10.1016/j.ejmech.2022.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
18
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK‑positive non‑small cell lung cancer (Review). Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yong-Hua Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
19
|
Haselmann V, Hedtke M, Neumaier M. Liquid Profiling for Cancer Patient Stratification in Precision Medicine—Current Status and Challenges for Successful Implementation in Standard Care. Diagnostics (Basel) 2022; 12:diagnostics12030748. [PMID: 35328301 PMCID: PMC8947441 DOI: 10.3390/diagnostics12030748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor DNA (ctDNA), accurately described by the term liquid profiling (LP), enables real-time assessment of the tumor mutational profile as a minimally invasive test and has therefore rapidly gained traction, particular for the management of cancer patients. By LP, tumor-specific genetic alterations can be determined as part of companion diagnostics to guide selection of appropriate targeted therapeutics. Because LP facilitates longitudinal monitoring of cancer patients, it can be used to detect acquired resistant mechanisms or as a personalized biomarker for earlier detection of disease recurrence, among other applications. However, LP is not yet integrated into routine care to the extent that might be expected. This is due to the lack of harmonization and standardization of preanalytical and analytical workflows, the lack of proper quality controls, limited evidence of its clinical utility, heterogeneous study results, the uncertainty of clinicians regarding the value and appropriate indications for LP and its interpretation, and finally, the lack of reimbursement for most LP tests. In this review, the value proposition of LP for cancer patient management and treatment optimization, the current status of implementation in standard care, and the main challenges that need to be overcome are discussed in detail.
Collapse
|
20
|
The New Treatment Methods for Non-Hodgkin Lymphoma in Pediatric Patients. Cancers (Basel) 2022; 14:cancers14061569. [PMID: 35326719 PMCID: PMC8945992 DOI: 10.3390/cancers14061569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most common cancer malignancies is non-Hodgkin lymphoma, whose incidence is nearly 3% of all 36 cancers combined. It is the fourth highest cancer occurrence in children and accounts for 7% of cancers in patients under 20 years of age. Today, the survivability of individuals diagnosed with non-Hodgkin lymphoma varies by about 70%. Chemotherapy, radiation, stem cell transplantation, and immunotherapy have been the main methods of treatment, which have improved outcomes for many oncological patients. However, there is still the need for creation of novel medications for those who are treatment resistant. Additionally, more effective drugs are necessary. This review gathers the latest findings on non-Hodgkin lymphoma treatment options for pediatric patients. Attention will be focused on the most prominent therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T cell therapy and others.
Collapse
|
21
|
Boichuk S, Dunaev P, Mustafin I, Mani S, Syuzov K, Valeeva E, Bikinieva F, Galembikova A. Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 2022; 10:biomedicines10030601. [PMID: 35327403 PMCID: PMC8945560 DOI: 10.3390/biomedicines10030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
The microtubule-targeting agents (MTAs) are well-known chemotherapeutic agents commonly used for therapy of a broad spectrum of human malignancies, exhibiting epithelial origin, including breast, lung, and prostate cancer. Despite the impressive response rates shortly after initiation of MTA-based therapy, the vast majority of human malignancies develop resistance to MTAs due to the different mechanisms. Here, we report that infigratinib (BGJ 398), a potent FGFR1-4 inhibitor, restores sensitivity of a broad spectrum of ABCB1-overexpressing cancer cells to certain chemotherapeutic agents, including paclitaxel (PTX) and doxorubicin (Dox). This was evidenced for the triple-negative breast cancer (TNBC), and gastrointestinal stromal tumor (GIST) cell lines, as well. Indeed, when MDR-overexpressing cancer cells were treated with a combination of BGJ 398 and PTX (or Dox), we observed a significant increase of apoptosis which was evidenced by an increased expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin V-positive cells, as well. Moreover, BGJ 398 used in combination with PTX significantly decreased the viability and proliferation of the resistant cancer cells. As expected, no apoptosis was found in ABCB1-overexpressing cancer cells treated with PTX, Dox, or BGJ 398 alone. Inhibition of FGFR-signaling by BGJ 398 was evidenced by the decreased expression of phosphorylated (i.e., activated) forms of FGFR and FRS-2, a well-known adaptor protein of FGFR signaling, and downstream signaling molecules (e.g., STAT-1, -3, and S6). In contrast, expression of MDR-related ABC-transporters did not change after BGJ 398 treatment, thereby suggesting an impaired function of MDR-related ABC-transporters. By using the fluorescent-labeled chemotherapeutic agent PTX-Alexa488 (Flutax-2) and doxorubicin, exhibiting an intrinsic fluorescence, we found that BGJ 398 substantially impairs their efflux from MDR-overexpressing TNBC cells. Moreover, the efflux of Calcein AM, a well-known substrate for ABCB1, was also significantly impaired in BGJ 398-treated cancer cells, thereby suggesting the ABCB1 as a novel molecular target for BGJ 398. Of note, PD 173074, a potent FGFR1 and VEGFR2 inhibitor failed to retain chemotherapeutic agents inside ABCB1-overexpressing cells. This was consistent with the inability of PD 173074 to sensitize Tx-R cancer cells to PTX and Dox. Collectively, we show here for the first time that BGJ 398 reverses the sensitivity of MDR-overexpressing cancer cells to certain chemotherapeutic agents due to inhibition of their efflux from cancer cells via ABCB1-mediated mechanism.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Correspondence: ; Tel.: +7-917-397-80-93; Fax: +7-843-236-06-52
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Ilshat Mustafin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia;
| | - Shinjit Mani
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Elena Valeeva
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| |
Collapse
|
22
|
Karaca Atabay E, Mecca C, Wang Q, Ambrogio C, Mota I, Prokoph N, Mura G, Martinengo C, Patrucco E, Leonardi G, Hossa J, Pich A, Mologni L, Gambacorti-Passerini C, Brugières L, Geoerger B, Turner SD, Voena C, Cheong TC, Chiarle R. Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma. Blood 2022; 139:717-731. [PMID: 34657149 PMCID: PMC8814675 DOI: 10.1182/blood.2020008136] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCLs) frequently carry oncogenic fusions involving the anaplastic lymphoma kinase (ALK) gene. Targeting ALK using tyrosine kinase inhibitors (TKIs) is a therapeutic option in cases relapsed after chemotherapy, but TKI resistance may develop. By applying genomic loss-of-function screens, we identified PTPN1 and PTPN2 phosphatases as consistent top hits driving resistance to ALK TKIs in ALK+ ALCL. Loss of either PTPN1 or PTPN2 induced resistance to ALK TKIs in vitro and in vivo. Mechanistically, we demonstrated that PTPN1 and PTPN2 are phosphatases that bind to and regulate ALK phosphorylation and activity. In turn, oncogenic ALK and STAT3 repress PTPN1 transcription. We found that PTPN1 is also a phosphatase for SHP2, a key mediator of oncogenic ALK signaling. Downstream signaling analysis showed that deletion of PTPN1 or PTPN2 induces resistance to crizotinib by hyperactivating SHP2, the MAPK, and JAK/STAT pathways. RNA sequencing of patient samples that developed resistance to ALK TKIs showed downregulation of PTPN1 and PTPN2 associated with upregulation of SHP2 expression. Combination of crizotinib with a SHP2 inhibitor synergistically inhibited the growth of wild-type or PTPN1/PTPN2 knock-out ALCL, where it reverted TKI resistance. Thus, we identified PTPN1 and PTPN2 as ALK phosphatases that control sensitivity to ALK TKIs in ALCL and demonstrated that a combined blockade of SHP2 potentiates the efficacy of ALK inhibition in TKI-sensitive and -resistant ALK+ ALCL.
Collapse
Affiliation(s)
- Elif Karaca Atabay
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Carmen Mecca
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Qi Wang
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Ines Mota
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Giulia Mura
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cinzia Martinengo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Leonardi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Jessica Hossa
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Achille Pich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | | | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Villejuif, France
- Department of Oncology for Children and Adolescents, Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8203, Villejuif, France; and
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Zou Z, Hao X, Zhang C, Li H, Dong G, Peng Y, Ma K, Guo Y, Shan L, Zhang Y, Liang L, Gu Y, Xing P, Li J. Clinical outcome, long-term survival and tolerability of sequential therapy of first-line crizotinib followed by alectinib in advanced ALK+NSCLC: A multicenter retrospective analysis in China. Thorac Cancer 2021; 13:107-116. [PMID: 34851035 PMCID: PMC8720624 DOI: 10.1111/1759-7714.14232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There is limited data on the clinical outcome, long-term survival and tolerability of sequential therapy of first-line crizotinib followed by alectinib in a real-world setting for Chinese patients with advanced ALK+ NSCLC. METHODS The medical records of patients who received sequential therapy with first-line crizotinib followed by alectinib (no intermittent systemic therapy was allowed between the two ALK-TKIs) were collected from six centers in China. Combined time treatment to failure (C-TTF) was defined as the period from the start of crizotinib to the complete discontinuation of alectinib due to any cause. RESULTS A total of 61 patients were included in our study. Fifty-two patients were switched to alectinib due to disease progression, seven as a result of toxicity, and two due to patient preference. At the time of data cutoff, alectinib treatment was discontinued in 31 patients on account of disease progression while severe adverse events resulted in cessation of alectinib in another two patients. Rebiopsy was conducted in 21 patients following disease progression on alectinib in whom ALK secondary mutation was found in 13 patients. Patients with ALK secondary mutation demonstrated better PFS during treatment with subsequent ALK-TKIs compared with those without (10.4 vs. 3.1 m, p = 0.0018, HR = 0.08). With a median follow-up of 34.3 months, C-TTF was 39.2 months and estimated 5-year OS was 68.6% in the overall population. CONCLUSION Sequential therapy with first-line crizotinib followed by alectinib demonstrated long-term benefits. Different efficacy in subsequent ALK-TKI between patients with or without ALK secondary mutation further emphasized the importance of rebiopsy to guide targeted therapy more precisely.
Collapse
Affiliation(s)
- Zihua Zou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuiying Zhang
- Cancer Center, Inner Mongolia Autonomous Region People's Hospital, Huhhot, China
| | - Haojing Li
- Cancer Center, Inner Mongolia Autonomous Region People's Hospital, Huhhot, China
| | - Guilan Dong
- Oncology Department, Tangshan People' s Hospital, Tangshan, China
| | - Yumei Peng
- Oncology Department, Tangshan People' s Hospital, Tangshan, China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ye Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Li Shan
- Department of Thoracic Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yan Zhang
- Department of Thoracic Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Li Liang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Yangchun Gu
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
25
|
Chai X, Yinwang E, Wang Z, Wang Z, Xue Y, Li B, Zhou H, Zhang W, Wang S, Zhang Y, Li H, Mou H, Sun L, Qu H, Wang F, Zhang Z, Chen T, Ye Z. Predictive and Prognostic Biomarkers for Lung Cancer Bone Metastasis and Their Therapeutic Value. Front Oncol 2021; 11:692788. [PMID: 34722241 PMCID: PMC8552022 DOI: 10.3389/fonc.2021.692788] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Bone metastasis, which usually accompanies severe skeletal-related events, is the most common site for tumor distant dissemination and detected in more than one-third of patients with advanced lung cancer. Biopsy and imaging play critical roles in the diagnosis of bone metastasis; however, these approaches are characterized by evident limitations. Recently, studies regarding potential biomarkers in the serum, urine, and tumor tissue, were performed to predict the bone metastases and prognosis in patients with lung cancer. In this review, we summarize the findings of recent clinical research studies on biomarkers detected in samples obtained from patients with lung cancer bone metastasis. These markers include the following: (1) bone resorption-associated markers, such as N-terminal telopeptide (NTx)/C-terminal telopeptide (CTx), C-terminal telopeptide of type I collagen (CTx-I), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), pyridinoline (PYD), and parathyroid hormone related peptide (PTHrP); (2) bone formation-associated markers, including total serum alkaline phosphatase (ALP)/bone specific alkaline phosphatase(BAP), osteopontin (OP), osteocalcin (OS), amino-terminal extension propeptide of type I procollagen/carboxy-terminal extension propeptide of type I procollagen (PICP/PINP); (3) signaling markers, including epidermal growth factor receptor/Kirsten rat sarcoma/anaplastic lymphoma kinase (EGFR/KRAS/ALK), receptor activator of nuclear factor κB ligand/receptor activator of nuclear factor κB/osteoprotegerin (RANKL/RANK/OPG), C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4 (CXCL12/CXCR4), complement component 5a receptor (C5AR); and (4) other potential markers, such as calcium sensing receptor (CASR), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), cytokeratin 19 fragment/carcinoembryonic antigen (CYFRA/CEA), tissue factor, cell-free DNA, long non-coding RNA, and microRNA. The prognostic value of these markers is also investigated. Furthermore, we listed some clinical trials targeting hotspot biomarkers in advanced lung cancer referring for their therapeutic effects.
Collapse
Affiliation(s)
- Xupeng Chai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Eloy Yinwang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Yongxing Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Haochen Mou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Lingling Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Fangqian Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zengjie Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institute of Orthopedic Research, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Villa M, Sharma GG, Manfroni C, Cortinovis D, Mologni L. New Advances in Liquid Biopsy Technologies for Anaplastic Lymphoma Kinase (ALK)-Positive Cancer. Cancers (Basel) 2021; 13:5149. [PMID: 34680298 PMCID: PMC8534237 DOI: 10.3390/cancers13205149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells are characterized by high genetic instability, that favors tumor relapse. The identification of the genetic causes of relapse can direct next-line therapeutic choices. As tumor tissue rebiopsy at disease progression is not always feasible, noninvasive alternative methods are being explored. Liquid biopsy is emerging as a non-invasive, easy and repeatable tool to identify specific molecular alterations and monitor disease response during treatment. The dynamic follow-up provided by this analysis can provide useful predictive information and allow prompt therapeutic actions, tailored to the genetic profile of the recurring disease, several months before radiographic relapse. Oncogenic fusion genes are particularly suited for this type of analysis. Anaplastic Lymphoma Kinase (ALK) is the dominant driver oncogene in several tumors, including Anaplastic Large-Cell Lymphoma (ALCL), Non-Small Cell Lung Cancer (NSCLC) and others. Here we review recent findings in liquid biopsy technologies, including ctDNA, CTCs, exosomes, and other markers that can be investigated from plasma samples, in ALK-positive cancers.
Collapse
Affiliation(s)
- Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Geeta G. Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Chiara Manfroni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| | - Diego Cortinovis
- Department of Oncology, San Gerardo Hospital, 20900 Monza, Italy;
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (G.G.S.); (C.M.)
| |
Collapse
|
27
|
The Dual Role of Autophagy in Crizotinib-Treated ALK + ALCL: From the Lymphoma Cells Drug Resistance to Their Demise. Cells 2021; 10:cells10102517. [PMID: 34685497 PMCID: PMC8533885 DOI: 10.3390/cells10102517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy has been described as harboring a dual role in cancer development and therapy. Depending on the context, it can exert either pro-survival or pro-death functions. Here, we review what is known about autophagy in crizotinib-treated ALK+ ALCL. We first present our main findings on the role and regulation of autophagy in these cells. Then, we provide literature-driven hypotheses that could explain mechanistically the pro-survival properties of autophagy in crizotinib-treated bulk and stem-like ALK+ ALCL cells. Finally, we discuss how the potentiation of autophagy, which occurs with combined therapies (ALK and BCL2 or ALK and RAF1 co-inhibition), could convert it from a survival mechanism to a pro-death process.
Collapse
|
28
|
Liang HC, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA, Abraham BJ, Prokoph N, Stoiber S, Tangermann S, Lobello C, Oppelt J, Anagnostopoulos I, Hielscher T, Pervez S, Klapper W, Zammarchi F, Silva DA, Garcia KC, Baker D, Janz M, Schleussner N, Fend F, Pospíšilová Š, Janiková A, Wallwitz J, Stoiber D, Simonitsch-Klupp I, Cerroni L, Pileri S, de Leval L, Sibon D, Fataccioli V, Gaulard P, Assaf C, Knörr F, Damm-Welk C, Woessmann W, Turner SD, Look AT, Mathas S, Kenner L, Merkel O. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 2021; 12:5577. [PMID: 34552066 PMCID: PMC8458384 DOI: 10.1038/s41467-021-25379-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL. Anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma often with poor prognosis. To identify genes defining ALCL cell state and dependencies, the authors here characterize ALCL-specific super-enhancers and describe the BATF3/IL-2R−module as a therapeutic opportunity for ALCL.
Collapse
Affiliation(s)
- Huan-Chang Liang
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK
| | - Mariantonia Costanza
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Gurnhofer
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Ivonne A Montes-Mojarro
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nina Prokoph
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Stoiber
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cosimo Lobello
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | | | - Thomas Hielscher
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shahid Pervez
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | - Daniel-Adriano Silva
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Martin Janz
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nikolai Schleussner
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Falko Fend
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Šárka Pospíšilová
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Andrea Janiková
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jacqueline Wallwitz
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Ingrid Simonitsch-Klupp
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Stefano Pileri
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - David Sibon
- Hematology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, and Institut Necker-Enfants Malades, INSERM UMR1151 (Normal and pathological lymphoid differentiation), Université de Paris, Paris, France
| | - Virginie Fataccioli
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Chalid Assaf
- Department of Dermatology, HELIOS Hospital Krefeld, Krefeld, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Knörr
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephan Mathas
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany. .,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany. .,German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Lukas Kenner
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria. .,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria. .,Center for Biomarker Research in Medicine (CBMed) Core Lab 2, Medical University of Vienna, Vienna, Austria.
| | - Olaf Merkel
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.
| |
Collapse
|
29
|
Arosio G, Sharma GG, Villa M, Mauri M, Crespiatico I, Fontana D, Manfroni C, Mastini C, Zappa M, Magistroni V, Ceccon M, Redaelli S, Massimino L, Garbin A, Lovisa F, Mussolin L, Piazza R, Gambacorti-Passerini C, Mologni L. Synergistic Drug Combinations Prevent Resistance in ALK+ Anaplastic Large Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13174422. [PMID: 34503232 PMCID: PMC8431561 DOI: 10.3390/cancers13174422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Despite success of targeted therapy, cancer cells very often find a way to survive treatment; this eventually causes a tumor to relapse. In a particular type of lymphoma carrying a specific chromosomal rearrangement named anaplastic large-cell lymphoma (ALCL), selective drugs targeting the cause of the disease can induce spectacular remission of chemotherapy-resistant cancer. However, the lymphoma relapses again in about half of the cases, leaving no therapeutic options. We studied the possibility to combine two simultaneous treatments in order to prevent the relapse, starting from the hypothesis that acquiring resistance to two drugs at the same time is statistically very unlikely. We demonstrate that treating lymphoma cells with drug combinations has superior efficacy in comparison with single drug treatments, both in cell cultures and in mice. Abstract Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30–40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.
Collapse
Affiliation(s)
- Giulia Arosio
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Geeta G. Sharma
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Department Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Matteo Villa
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Mario Mauri
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Ilaria Crespiatico
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Diletta Fontana
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Chiara Manfroni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Cristina Mastini
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Marina Zappa
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Vera Magistroni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Monica Ceccon
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Sara Redaelli
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Luca Massimino
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Department Gastroenterology, Humanitas University, Pieve Emanuele, 20090 Milano, Italy
| | - Anna Garbin
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Federica Lovisa
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Lara Mussolin
- Department Women’s and Children’s Health, Clinic of Pediatric Hemato-Oncology, University of Padua, 35122 Padova, Italy; (A.G.); (F.L.); (L.M.)
- Non-Hodgkin Lymphoma Unit, Istituto di Ricerca Pediatrica Fondazione Città della Speranza, 35122 Padova, Italy
| | - Rocco Piazza
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Carlo Gambacorti-Passerini
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
| | - Luca Mologni
- Department Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.A.); (G.G.S.); (M.V.); (M.M.); (I.C.); (D.F.); (C.M.); (C.M.); (M.Z.); (V.M.); (M.C.); (S.R.); (L.M.); (R.P.); (C.G.-P.)
- Correspondence:
| |
Collapse
|
30
|
Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. Clinical Utility of Liquid Biopsy-Based Actionable Mutations Detected via ddPCR. Biomedicines 2021; 9:906. [PMID: 34440110 PMCID: PMC8389639 DOI: 10.3390/biomedicines9080906] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide and remains a major public health challenge. The introduction of more sensitive and powerful technologies has permitted the appearance of new tumor-specific molecular aberrations with a significant cancer management improvement. Therefore, molecular pathology profiling has become fundamental not only to guide tumor diagnosis and prognosis but also to assist with therapeutic decisions in daily practice. Although tumor biopsies continue to be mandatory in cancer diagnosis and classification, several studies have demonstrated that liquid biopsies could be used as a potential tool for the detection of cancer-specific biomarkers. One of the main advantages is that circulating free DNA (cfDNA) provides information about intra-tumoral heterogeneity, reflecting dynamic changes in tumor burden. This minimally invasive tool has become an accurate and reliable instrument for monitoring cancer genetics. However, implementing liquid biopsies across the clinical practice is still ongoing. The main challenge is to detect genomic alterations at low allele fractions. Droplet digital PCR (ddPCR) is a powerful approach that can overcome this issue due to its high sensitivity and specificity. Here we explore the real-world clinical utility of the liquid biopsy ddPCR assays in the most diagnosed cancer subtypes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Adrià Asensi-Puig
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (A.A.-P.); (V.G.-R.)
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
31
|
Schokrpur S, Hilburn V, Giustini N, Bazhenova L. An overview of alectinib hydrochloride as a treatment option for ALK positive non-small cell lung cancer. Expert Opin Pharmacother 2021; 22:1815-1824. [PMID: 34225542 DOI: 10.1080/14656566.2021.1948014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Alectinib is a second-generation inhibitor of anaplastic lymphoma kinase (ALK) and RET. Phase III clinical trials have established its superiority to crizotinib in the first-line ALK inhibitor-naïve setting. Studies also support its use over chemotherapy in the post-crizotinib setting. It is currently one of several FDA- and EMA-approved ALK inhibitors, and it is listed as a preferred initial therapy for treatment-naïve ALK-positive non-small cell lung cancer (NSCLC).Areas covered: Herein, the authors provide the reader with details of the chemical structure, pharmacologic properties, resistance mutations, phase I, II, and III clinical trials, and safety profile of alectinib. Furthermore, the authors provide the reader with the expert opinion and future perspectives on the drug.Expert opinion: Alectinib compares favorably to other second-generation ALK inhibitors with regards to safety, tolerability, and efficacy. Based on currently available data, it is an appropriate first-line option. Ongoing studies will better resolve the ideal sequencing of ALK inhibitors in the treatment of ALK-positive NSCLC.
Collapse
Affiliation(s)
- Shiruyeh Schokrpur
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Van Hilburn
- Division of Pharmacy, University of California San Diego, San Diego, California, USA
| | - Nicholas Giustini
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Lyudmila Bazhenova
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| |
Collapse
|
32
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
33
|
Real-world treatment outcomes with brigatinib in patients with pretreated ALK+ metastatic non-small cell lung cancer. Lung Cancer 2021; 157:9-16. [PMID: 34051652 DOI: 10.1016/j.lungcan.2021.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The next-generation ALK inhibitor brigatinib is approved for use in patients with ALK inhibitor-naïve ALK-positive advanced NSCLC and in patients previously treated with crizotinib. A phase II trial showed that brigatinib is active in patients with ALK-positive metastatic NSCLC (mNSCLC) who had progressed on prior crizotinib (response rate 56 %, median PFS 16.7 months, median OS 34.1 months). We report final data from the UVEA-Brig study of brigatinib in ALK inhibitor-pretreated ALK-positive mNSCLC in clinical practice. METHODS UVEA-Brig was a retrospective chart review of patients treated with brigatinib in Italy, Norway, Spain and the UK in an expanded access program. Adults with ALK-positive mNSCLC, including those with brain lesions, resistant to or intolerant of ≥1 prior ALK inhibitor and ECOG performance status ≤3 were eligible. Patients received brigatinib 180 mg once daily with a 7-day lead-in at 90 mg. The objectives were to describe patient characteristics, clinical disease presentation, treatment regimens used and clinical outcomes. RESULTS Data for 104 patients (male: 43 %; median age: 53 [29-80] years; ECOG performance status 0/1/2/3: 41/41/10/5 %; brain/CNS metastases: 63 %) were analyzed. Patients had received a median of 2 (1-6) lines of systemic therapy prior to brigatinib (37.5 % received ≥3) and a median of 1 (1-5) lines of prior ALK inhibitor-containing therapy (crizotinib 83.6 %; ceritinib 50.0 %; alectinib 6.7 %; lorlatinib 4.8 %). At the time of analysis, 77 patients had discontinued brigatinib. Overall, the response rate was 39.8 %, median PFS was 11.3 (95 % CI:8.6-12.9) months and median OS was 23.3 (95 % CI: 16.0-NR) months. Four patients discontinued brigatinib treatment due to adverse events. 53 patients received systemic therapy after brigatinib, 42 with an ALK inhibitor (lorlatinib, n = 34). CONCLUSIONS These real-world data indicate the activity and tolerability of brigatinib in patients with ALK-positive mNSCLC who were more heavily pretreated than patients included in clinical trials.
Collapse
|
34
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
35
|
Suryavanshi M, Chaudhari K, Nathany S, Talwar V. Identification of a novel resistance ALK p.(Q1188_L1190del) deletion in a patient with ALK-rearranged non-small-cell lung cancer. Cancer Genet 2021; 256-257:48-50. [PMID: 33887694 DOI: 10.1016/j.cancergen.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Moushumi Suryavanshi
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Krushna Chaudhari
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Shrinidhi Nathany
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| | - Vineet Talwar
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India
| |
Collapse
|
36
|
Stiller C, Viktorsson K, Paz Gomero E, Hååg P, Arapi V, Kaminskyy VO, Kamali C, De Petris L, Ekman S, Lewensohn R, Karlström AE. Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR. Cancers (Basel) 2021; 13:cancers13040922. [PMID: 33671772 PMCID: PMC7926549 DOI: 10.3390/cancers13040922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lung cancer is often detected at late stages when metastases are present and the genomic make-ups of the tumors are heterogeneous. Analyses of genomic alterations in non-small-cell lung cancer (NSCLC) have revealed mutated tumor-associated membrane receptors and fusion proteins, which can be targeted via tyrosine kinase inhibitors (TKIs). TKIs initially often have a good effect, but a fraction of the tumor lesions may develop resistance through additional mutations in the targeted kinases or by increased expression/function of other membrane receptors. Detection of TKI-bypassing mechanisms is difficult in tissue biopsies as these analyze only a subpart of tumors or lesions. Liquid biopsies based on tumor-secreted small extracellular vesicles (sEVs) into body fluids can assess tumor heterogeneity. We present an immuno-PCR method for the detection of the epidermal growth factor receptor (EGFR), the human epidermal growth factor receptor 2 (HER2), and the insulin-like growth factor 1 receptor (IGF-1R) on sEVs. Initial investigations of sEVs from EGFR-mutant NSCLC tumor cells or pleural effusion (PE) fluid from patients with NSCLC or benign diseases showed different protein profiles for individual sEV samples. Further development of the immuno-PCR could complement DNA/mRNA-based assays detecting kinase mutations to allow longitudinal treatment monitoring of diverse TKI-bypassing mechanisms. Abstract Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Elizabeth Paz Gomero
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vitaliy O. Kaminskyy
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Correspondence: ; Tel.: +46-8-790-99-78
| |
Collapse
|
37
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
38
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
39
|
Giustini NP, Jeong AR, Buturla J, Bazhenova L. Advances in Treatment of Locally Advanced or Metastatic Non-Small Cell Lung Cancer: Targeted Therapy. Clin Chest Med 2020; 41:223-235. [PMID: 32402358 DOI: 10.1016/j.ccm.2020.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The treatment of metastatic non-small cell lung cancer (NSCLC) is constantly evolving. Although the advent of immunotherapy has played an important role in the treatment of patients with NSCLC, the identification of driver mutations and the subsequent specific treatment of these targets often lead to durable responses while maintaining quality of life. This review delves into targeted therapies available for epidermal growth factor receptor, anaplastic lymphoma kinase, ROS1, neurotrophic tropomyosin receptor kinase, and BRAF- mutated NSCLC patients, as well as other mutations with promising novel drugs under clinical investigation.
Collapse
Affiliation(s)
- Nicholas P Giustini
- UCSD Moores Cancer Center, 3855 Health Sciences Drive MC #0987, La Jolla, CA 92093-0829, USA.
| | - Ah-Reum Jeong
- UCSD Moores Cancer Center, 3855 Health Sciences Drive MC #0987, La Jolla, CA 92093-0829, USA
| | - James Buturla
- UCSD Moores Cancer Center, 3855 Health Sciences Drive MC #0987, La Jolla, CA 92093-0829, USA
| | - Lyudmila Bazhenova
- UCSD Moores Cancer Center, 3855 Health Sciences Drive MC #0987, La Jolla, CA 92093-0829, USA
| |
Collapse
|
40
|
Zhang C, Wang Z, Zhuang R, Guo X, Feng Y, Shen F, Liu W, Zhang Y, Tong H, Sun W, Liu J, Wang G, Dai C, Lu W, Zhou Y. Efficacy and Resistance of ALK Inhibitors in Two Inflammatory Myofibroblastic Tumor Patients with ALK Fusions Assessed by Whole Exome and RNA Sequencing. Onco Targets Ther 2020; 13:10335-10342. [PMID: 33116613 PMCID: PMC7568619 DOI: 10.2147/ott.s270481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022] Open
Abstract
We report two inflammatory myofibroblastic tumor (IMT) patients with ALK fusions (RRBP-ALK and TNS1-ALK, respectively). They both received tumor resection surgery and treatment with ALK inhibitors crizotinib followed by alectinib, and upon receiving each of the drugs, showed a brief response, then experienced recurrence or progression of the disease. During the treatment, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) were applied to monitor potential drug-induced gene mutation and expression changes. A novel, secondary mutation in ALK exon 23 (L1196Q) was identified in patient 1 after alectinib resistance developed. Guided by this result, a newer ALK inhibitor, ceritinib was prescribed. The patient was able to achieve a partial response (PR) and is in good condition as of the manuscript date. On the contrary, there was no secondary mutation identified in ALK in patient 2 after drug resistance. While the expression of PTCH1, a negative regulator of the sonic hedgehog (SHH) signaling pathway, was significantly reduced at the time after the treatment with crizotinib before that of alectinib. The expression of PTCH1 was also reduced after the treatment with alectinib. It was reported that ALK can exert its biological functions partially by activating SHH signaling pathway. The down-regulation of PTCH1 suggests the compensatory activation of SHH pathway may cause resistance to ALK inhibitors in IMT. Going forward, monitoring gene mutation and expression changes through DNA and RNA sequencing will be able to offer opportunities to investigate potential mechanisms of drug resistance and will help to achieve precise prescription for better treatment outcomes.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Rongyuan Zhuang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xi Guo
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Feng
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenshuai Liu
- Department of General Surgery, Shanghai Public Health Clinical Center, Shanghai, People's Republic of China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wending Sun
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Jun Liu
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Guan Wang
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Chun Dai
- GenomiCare Biotechnology Co. Ltd, Shanghai, People's Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Sorrentino D, Frentzel J, Mitou G, Blasco RB, Torossian A, Hoareau-Aveilla C, Pighi C, Farcé M, Meggetto F, Manenti S, Espinos E, Chiarle R, Giuriato S. High Levels of miR-7-5p Potentiate Crizotinib-Induced Cytokilling and Autophagic Flux by Targeting RAF1 in NPM-ALK Positive Lymphoma Cells. Cancers (Basel) 2020; 12:cancers12102951. [PMID: 33066037 PMCID: PMC7650725 DOI: 10.3390/cancers12102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Anaplastic lymphoma kinase positive anaplastic large cell lymphomas are a pediatric disease, which still needs treatment improvement. Crizotinib was the first ALK-targeted inhibitor used in clinics, but relapses are now known to occur. Current research efforts indicate that combined therapies could represent a superior strategy to eradicate malignant cells and prevent tumor recurrence. Autophagy is a self-digestion cellular process, known to be induced upon diverse cancer therapies. Our present work demonstrates that the potentiation of the crizotinib-induced autophagy flux, through the serine/threonine kinase RAF1 downregulation, drives ALK+ ALCL cells to death. These results should encourage further investigations on the therapeutic modulation of autophagy in this particular cancer settings and other ALK-related malignancies. Abstract Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.
Collapse
Affiliation(s)
- Domenico Sorrentino
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Julie Frentzel
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Merck Serono S.A., Department of Biotechnology Process Sciences, Route de Fenil 25, Z.I. B, 1804 Corsier-sur-Vevey, Switzerland
| | - Géraldine Mitou
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Rafael B. Blasco
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
| | - Avédis Torossian
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Coralie Hoareau-Aveilla
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
| | - Chiara Pighi
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Manon Farcé
- Pôle Technologique du CRCT—Plateau de Cytométrie et Tri cellulaire—INSERM U1037, F-31037 Toulouse, France;
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Stéphane Manenti
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
| | - Estelle Espinos
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
| | - Roberto Chiarle
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sylvie Giuriato
- Cancer Research Center of Toulouse, INSERM U1037—Université Toulouse III-Paul Sabatier—CNRS ERL5294, F-31037 Toulouse, France; (D.S.); (J.F.); (G.M.); (A.T.); (C.H.-A.); (F.M.); (S.M.); (E.E.)
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (R.B.B.); (C.P.); (R.C.)
- Ligue Nationale Contre le Cancer, équipe labellisée 2016, F-31037 Toulouse, France
- European Research Initiative on ALK-related malignancies (ERIA), Cambridge CB2 0QQ, UK
- TRANSAUTOPHAGY: European Network for Multidisciplinary Research and Translation of Autophagy Knowledge, COST Action CA15138, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +33-(5)-82-74-16-35
| |
Collapse
|
42
|
Baldacci S, Grégoire V, Patrucco E, Chiarle R, Jamme P, Wasielewski E, Descarpentries C, Copin MC, Awad MM, Cortot AB. Complete and prolonged response to anti-PD1 therapy in an ALK rearranged lung adenocarcinoma. Lung Cancer 2020; 146:366-369. [PMID: 32553554 DOI: 10.1016/j.lungcan.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICI) have become a major treatment in advanced non small cell lung cancer (NSCLC). However, some patients do not benefit from ICI, especially those harboring an ALK rearrangement. Here, we report a case of prolonged complete tumor response to immunotherapy in an ALK-rearranged NSCLC patient. MATERIALS AND METHODS We verify ALK expression and rearrangement on formalin-fixed paraffin-embedded tumor samples of the patient by Immunohistochemistry and Fluorescence In Situ Hybridization analysis. The patient provided written informed consent authorizing publication of clinical case. RESULTS We report the case of 48 years old man with a ALK-rearranged NSCLC. This patient displayed a complete response for 16 months under nivolumab therapy in third line setting after ceritinib and platin based chemotherapy. CONCLUSION This is the first case of complete and prolonged response to ICI in ALK rearranged NSCLC. This case supports the idea that some ALK rearranged NSCLC could durably benefit from immunotherapy.
Collapse
Affiliation(s)
- Simon Baldacci
- Univ Lille, Department of Thoracic Oncology, CHU Lille, F-59000, Lille, France
| | - Valérie Grégoire
- Univ Lille, Department of Pathology, CHU Lille, F-59000, Lille, France
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy; Department of Pathology, Boston Children Hospital and Harvard Medical School, Boston, USA
| | - Philippe Jamme
- Univ Lille, Department of Thoracic Oncology, CHU Lille, F-59000, Lille, France
| | - Eric Wasielewski
- Univ Lille, Department of Thoracic Oncology, CHU Lille, F-59000, Lille, France
| | | | | | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alexis B Cortot
- Univ Lille, Department of Thoracic Oncology, CHU Lille, F-59000, Lille, France.
| |
Collapse
|
43
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
44
|
Arribas RL, Bordas A, Domènech Omella J, Cedillo JL, Janssens V, Montiel C, de Los Ríos C. An okadaic acid fragment analogue prevents nicotine-induced resistance to cisplatin by recovering PP2A activity in non-small cell lung cancer cells. Bioorg Chem 2020; 100:103874. [PMID: 32361056 DOI: 10.1016/j.bioorg.2020.103874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
We herein report the design, synthesis, and functional impact of an okadaic acid (OA) small analogue, ITH12680, which restores the activity of phosphoprotein phosphatase 2A (PP2A), whose deficient activity has been implicated in nicotine-mediated tumor progression and chemoresistance in non-small cell lung cancer (NSCLC). For its design, we paid attention to the structure of the PP2A-OA complex, where the C16-C38 OA fragment confers PP2A affinity and selectivity, but it is not involved in the inhibitory effect. Confirming this hypothesis, PP2A activity was not inhibited by ITH12680. By contrast, the compound partially restored OA-exerted PP2A inhibition in vitro. Moreover, flow cytometry and immunoblotting experiments revealed that ITH12680 reversed nicotine-induced cisplatin resistance in NSCLC cells, as it prevented nicotine-induced reduction of Bax expression and inhibited nicotine-mediated activation of cell survival and proliferation kinases, Akt and ERK1/2. Our findings suggest that the rescue of nicotine-inhibited PP2A activity could diminish the resistance to cisplatin treatment observed in NSCLC patients who continue smoking.
Collapse
Affiliation(s)
- Raquel L Arribas
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Judit Domènech Omella
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Herestraat 49, B-3000 Leuven, & LKI (Leuven Cancer Institute), Belgium
| | - Jose Luis Cedillo
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Veerle Janssens
- Department of Cellular & Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Herestraat 49, B-3000 Leuven, & LKI (Leuven Cancer Institute), Belgium
| | - Carmen Montiel
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain.
| | - Cristóbal de Los Ríos
- Department of Pharmacology and Therapeutic, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006 Madrid, Spain.
| |
Collapse
|
45
|
Liu YM, Kuo CN, Liou JP. Anaplastic lymphoma kinase inhibitors: an updated patent review (2014-2018). Expert Opin Ther Pat 2020; 30:351-373. [PMID: 32125908 DOI: 10.1080/13543776.2020.1738389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Introduction: Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, has been discovered in several cancers, including anaplastic large-cell lymphoma, non-small cell lung cancer, and inflammatory myofibroblastic tumors. The deregulation of ALK activities, such as translocation and point mutation, results in human carcinogenesis. The use of ALK inhibitors in clinical cancer treatment has been shown to be efficacious, and the issue of resistance to ALK inhibitors has been reported. Consequently, the development of a new generation of ALK inhibitors is necessary.Areas covered: This paper provides a comprehensive review of the patent literature from 2014 to 2018 including small molecule ALK inhibitors and their use as anticancer agents. The approved and developing ALK inhibitors are described.Expert commentary: The available three generations of ALK inhibitors have shown a good anticancer effect in ALK-positive non-small cell lung cancer. An urgent issue in this field is ALK resistance development. The development of new ALK inhibitors through structure modification of currently available ALK inhibitors is proceeding, such as the synthesis of macrocyclic compounds. This article arranges the ALK inhibitors that have published in the patent in recent years. It may help in the investigation of a new generation of ALK inhibitors, which can overcome the resistance issue and development of novel drug candidates in the future.
Collapse
Affiliation(s)
- Yi-Min Liu
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Chun-Nan Kuo
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
46
|
Hosoya M, Nishijima S, Kurose N. Investigation into an Unexpected Impurity: A Practical Approach to Process Development for the Addition of Grignard Reagents to Aldehydes Using Continuous Flow Synthesis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Masahiro Hosoya
- API R&D Laboratory, CMC R&D Division, Shionogi and Company, Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Shogo Nishijima
- API R&D Laboratory, CMC R&D Division, Shionogi and Company, Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| | - Noriyuki Kurose
- API R&D Laboratory, CMC R&D Division, Shionogi and Company, Ltd., 1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
| |
Collapse
|
47
|
Blakely CM, Riess JW. Interpretation of ceritinib clinical trial results and future combination therapy strategies for ALK-rearranged NSCLC. Expert Rev Anticancer Ther 2019; 19:1061-1075. [PMID: 31809604 DOI: 10.1080/14737140.2019.1699792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of all lung cancer cases. The continued advancement of DNA sequencing technology and the discovery of multiple specific driver mutations underlying many cases of NSCLC are moving clinical intervention toward a more targeted approach. Here we focus on anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, as an oncogenic driver in NSCLC. The ALK gene is rearranged in 3-7% of NSCLCs, and targeted inhibition of ALK is a viable therapy option.Areas covered: We discuss the available treatment options for ALK-positive NSCLC with an emphasis on the second-generation ALK inhibitor ceritinib. We also discuss practical treatment strategies and possible strategies to overcome or delay resistance to ALK inhibitors.Expert opinion: With a robust treatment armamentarium for patients with ALK-positive NSCLC, emphasis has shifted to optimizing individualized treatment strategies to further enhance outcomes for these patients.
Collapse
Affiliation(s)
- Collin M Blakely
- Department of Medicine, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jonathan W Riess
- Department of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
48
|
Trigg RM, Lee LC, Prokoph N, Jahangiri L, Reynolds CP, Amos Burke GA, Probst NA, Han M, Matthews JD, Lim HK, Manners E, Martinez S, Pastor J, Blanco-Aparicio C, Merkel O, de Los Fayos Alonso IG, Kodajova P, Tangermann S, Högler S, Luo J, Kenner L, Turner SD. The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun 2019; 10:5428. [PMID: 31780656 PMCID: PMC6883072 DOI: 10.1038/s41467-019-13315-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Resistance to anaplastic lymphoma kinase (ALK)-targeted therapy in ALK-positive non-small cell lung cancer has been reported, with the majority of acquired resistance mechanisms relying on bypass signaling. To proactively identify resistance mechanisms in ALK-positive neuroblastoma (NB), we herein employ genome-wide CRISPR activation screens of NB cell lines treated with brigatinib or ceritinib, identifying PIM1 as a putative resistance gene, whose high expression is associated with high-risk disease and poor survival. Knockdown of PIM1 sensitizes cells of differing MYCN status to ALK inhibitors, and in patient-derived xenografts of high-risk NB harboring ALK mutations, the combination of the ALK inhibitor ceritinib and PIM1 inhibitor AZD1208 shows significantly enhanced anti-tumor efficacy relative to single agents. These data confirm that PIM1 overexpression decreases sensitivity to ALK inhibitors in NB, and suggests that combined front-line inhibition of ALK and PIM1 is a viable strategy for the treatment of ALK-positive NB independent of MYCN status.
Collapse
Affiliation(s)
- Ricky M Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,Functional Genomics, Medicinal Science & Technology, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Liam C Lee
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,Amgen, Thousand Oaks, CA, 91320, USA
| | - Nina Prokoph
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Leila Jahangiri
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - C Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, 79430, USA
| | - G A Amos Burke
- Department of Paediatric Oncology, Box 181, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nicola A Probst
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Miaojun Han
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,OncoSec, San Diego, CA, 92121, USA
| | - Jamie D Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Hong Kai Lim
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Eleanor Manners
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Sonia Martinez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Joaquin Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Olaf Merkel
- Department of Experimental Pathology and Laboratory Animal Pathology, Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Ines Garces de Los Fayos Alonso
- Department of Experimental Pathology and Laboratory Animal Pathology, Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Lukas Kenner
- Department of Experimental Pathology and Laboratory Animal Pathology, Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, 1210, Austria.,Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Boltzmanngasse 20, Medical University of Vienna, Vienna, 1090, Austria
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Lab Block level 3, Box 231, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
49
|
Liu WJ, Du Y, Wen R, Yang M, Xu J. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer. Pharmacol Ther 2019; 206:107438. [PMID: 31715289 DOI: 10.1016/j.pharmthera.2019.107438] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted therapy, including mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), the receptor tyrosine kinase ROS proto-oncogene 1 (ROS1), and the serine/threonine-protein kinase BRAF (v-Raf murine sarcoma viral oncogene homolog B). We also discuss the mechanism of action of less common oncoproteins, as in-depth understanding of these molecular mechanisms is important for optimizing treatment strategies.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Wen
- Department of Medicine, Stanford University School of Medicine, California, USA
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China.
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
50
|
A novel ALK inhibitor ZYY inhibits Karpas299 cell growth in vitro and in a mouse xenograft model and induces protective autophagy. Toxicol Appl Pharmacol 2019; 383:114781. [DOI: 10.1016/j.taap.2019.114781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
|